*
3.7-5 .
, for a path algebra 4.4-5 /
6.7-13 1stSyzygy
8.1-1 <
, for two elements in a path algebra 4.5-2 =
3.7-6 \* (maps)
7.2-3 \+ (maps)
7.2-2 \=
, for two path algebra matrix modules 6.1-3 \= (maps)
7.2-1 \^
10.2-6 \in
, elt. in path alg. and ideal 4.7-6 ^
, a PathAlgebraMatModule element and a PathAlgebra element 6.3-1 AddNthPowerToRelations
4.7-5 AdjacencyMatrixOfQuiver
3.5-4 AdmissibleSequenceGenerator
4.15-5 AdmitsFinitelyManyNontips
5.3-1 AlgebraAsModuleOverEnvelopingAlgebra
4.17-13 AlgebraAsQuiverAlgebra
4.19-1 AllComplementsOfAlmostCompleteCotiltingModule
8.1-2 AllComplementsOfAlmostCompleteTiltingModule
8.1-2 AllIndecModulesOfLengthAtMost
7.3-1 AllModulesOfLengthAtMost
7.3-2 AllSimpleSubmodulesOfModule
7.3-3 AllSubmodulesOfModule
7.3-4 AlmostSplitSequence
9.1-1 9.1-1 AlmostSplitSequenceInPerpT
9.1-2 AnnihilatorOfModule
6.4-1 AreDerivedEquivalent
, A,B 12.3-18 ARQuiverNumerical
13.3-1 13.3-1 13.3-1 13.3-1 ArrowsOfQuiver
3.5-3 AssignGeneratorVariables
4.6-1 AssociatedGradedAlgebra
4.4-1 AssociatedMonomialAlgebra
4.4-2 BandRepresentativesLessThan
4.12-5 BandsLessThan
4.12-4 BasicVersionOfModule
6.4-2 BasisOfProjectives
6.5-1 BiggestHomogeneousPartInvLenInvLex
5.5-10 5.5-11 BilinearFormOfUnitForm
12.2-2 BlockDecompositionOfModule
6.4-3 BlocksOfAlgebra
4.19-2 BlockSplittingIdempotents
6.4-4 BongartzTest
4.11-24 BoundariesOfComplex
10.5-6 BoundaryCurvesOfCombinatorialMap
, map 12.3-10 BrauerConfigurationAlgebra
4.15-1 BridgeQuiver
4.12-7 BrutalTruncation
10.6-6 BrutalTruncationAbove
10.6-5 BrutalTruncationBelow
10.6-4 CanonicalAlgebra
4.15-2 CartanMatrix
4.13-1 CatOfComplex
10.5-1 CatOfRightAlgebraModules
10.3-2 Centre/Center
4.13-2 ChainMap
10.7-2 Coefficients
4.14-2 CoKernel
7.3-5 CoKernelOfWhat
7.2-4 CoKernelProjection
7.3-6 CombinatorialMap
, combinatorialmap 12.3-1 CombinatorialMapOfGentleAlgebra
, algebra 12.3-7 CommonDirectSummand
6.4-5 ComparisonLifting
10.7-8 ComparisonLiftingToProjectiveResolution
10.7-9 CompletelyReduce
5.3-2 CompletelyReduceGroebnerBasis
5.3-3 CompletelyReduceGroebnerBasisForModule
6.7-2 Complex
10.4-3 ComplexAndChainMaps
10.7-5 ComplexityOfAlgebra
4.13-3 ComplexityOfModule
6.4-6 ConnectedComponentsOfQuiver
3.5-11 ConstantInfList
10.2-25 CosyzygyTruncation
10.6-8 CotiltingModule
8.1-3 CoxeterMatrix
4.13-4 CoxeterPolynomial
4.13-5 Cut
10.2-20 CutJoinCurveCombinatorialMap
, map, boundary1, boundary2, curve, index 12.3-16 CutNonSepCombinatorialMap
, map, curve, index 12.3-14 CyclesOfComplex
10.5-5 DecomposeModule
6.4-7 DecomposeModuleProbabilistic
6.4-8 DecomposeModuleViaCharPoly
6.4-9 DecomposeModuleViaTop
6.4-10 DecomposeModuleWithInclusions
6.4-7 DecomposeModuleWithMultiplicities
6.4-11 DegOrderDirectPredecessors
13.5-3 DegOrderDirectSuccessors
13.5-6 DegOrderLEQ
13.4-6 DegOrderLEQNC
13.4-7 DegOrderPredecessors
13.5-2 DegOrderPredecessorsWithDirect
13.5-4 DegOrderSuccessors
13.5-5 DegOrderSuccessorsWithDirect
13.5-7 DepthSearchCombinatorialMap
, map, halfedge 12.3-11 DifferentialOfComplex
10.5-3 DifferentialsOfComplex
10.5-4 DimEnd
13.4-3 Dimension
4.13-6 DimensionVector
6.4-13 DimHom
13.4-2 Direction
10.2-9 DirectSumInclusions
6.4-15 DirectSumOfQPAModules
6.4-14 DirectSumProjections
6.4-16 DominantDimensionOfAlgebra
8.1-4 DominantDimensionOfModule
8.1-5 DoubleQuiver
3.5-12 DTr
6.6-3 6.6-4 DualOfAlgebraAsModuleOverEnvelopingAlgebra
4.17-14 DualOfCombinatorialMap
, map 12.3-4 DualOfModule
6.6-1 DualOfModuleHomomorphism
6.6-2 DualOfTranspose
6.6-3 DynkinQuiver
, DynkinQuiver 3.2-2 ElementFunction
10.2-12 ElementIn_vA_AsElementInIndecProj
6.5-3 ElementInIndecProjective
6.5-2 ElementOfPathAlgebra
4.5-1 ElementOfQuotientOfPathAlgebra
4.14-5 EndModuloProjOverAlgebra
7.3-7 EndOfModuleAsQuiverAlgebra
7.3-8 EndOverAlgebra
7.3-9 Enumerator
5.3-4 EnvelopingAlgebra
4.17-10 EnvelopingAlgebraHomomorphism
4.17-11 EulerBilinearFormOfAlgebra
12.2-9 ExtAlgebraGenerators
8.1-6 ExtOverAlgebra
8.1-7 FacesOfCombinatorialMap
, map 12.3-2 FaithfulDimension
8.1-8 FiniteChainMap
10.7-4 FiniteComplex
10.4-5 FiniteInfList
10.2-26 FinitePartAsList
10.2-36 ForEveryDegree
10.5-17 FrobeniusForm
4.13-7 FrobeniusLinearFunctional
4.13-8 FromEndMToHomMM
7.3-10 FromHomMMToEndM
7.3-11 FromIdentityToDoubleStarHomomorphism
6.4-17 FromMatrixToHomomorphismOfProjectives
7.3-23 FullSubquiver
3.5-10 FunctionInfList
10.2-24 GeneratorsOfQuiver
3.5-5 GenusOfCombinatorialMap
, map 12.3-3 GlobalDimension
4.13-9 GlobalDimensionOfAlgebra
8.1-9 GorensteinDimension
8.1-10 GorensteinDimensionOfAlgebra
8.1-11 GroebnerBasis
5.1-2 GroebnerBasisInvLenInvLex
5.5-5 GroebnerBasisOfIdeal
4.10-1 HalfInfList
10.2-21 HaveFiniteCoresolutionInAddM
8.1-12 HaveFiniteResolutionInAddM
8.1-13 HighestKnownDegree
10.5-12 HighestKnownPosition
10.2-32 HighestKnownValue
10.2-18 HomFactoringThroughProjOverAlgebra
7.3-12 HomFromProjective
7.3-13 HomologyBasisOfCombinatorialMap
, map 12.3-17 HomologyOfComplex
10.5-7 HomomorphismFromImages
7.2-27 HomOverAlgebra
7.3-14 HomOverAlgebraWithBasisFunction
7.3-14 Ideal
4.7-1 IdealOfQuotient
4.7-2 IdentityMapping
7.2-5 Image
7.3-15 ImageElm
7.2-6 ImageInclusion
7.3-16 ImageOfWhat
7.2-8 ImageProjection
7.3-17 ImageProjectionInclusion
7.3-18 ImagesSet
7.2-7 IncludeInProductQuiver
4.17-4 IncomingArrowsOfVertex
3.8-1 IndecInjectiveModules
6.5-4 IndecProjectiveModules
6.5-5 InDegreeOfVertex
3.8-3 InfConcatenation
10.2-41 InfList
10.2-42 InfListType
10.2-10 InfoGroebnerBasis
5.1-1 InfoQuiver
3.1-1 InitialValue
10.2-16 InjDimension
8.1-14 InjDimensionOfModule
8.1-15 InjectiveEnvelope
8.1-16 InjectiveResolution
11.1-1 IntegersList
10.2-43 IntersectionOfSubmodules
6.4-18 IrreducibleMorphismsEndingIn
9.1-3 IrreducibleMorphismsStartingIn
9.1-3 IsABand
4.12-3 IsAcyclicQuiver
3.3-2 IsAdmissibleIdeal
4.8-1 IsAdmissibleQuotientOfPathAlgebra
4.11-1 IsARQuiverNumerical
13.3-2 IsArrow
3.6-3 IsBasicAlgebra
4.19-3 IsCanonicalAlgebra
4.11-4 IsCat
10.3-1 IsChainMap
10.7-1 IsCompleteGroebnerBasis
5.2-2 IsCompletelyReducedGroebnerBasis
5.2-1 IsConnectedQuiver
3.3-4 IsCotiltingModule
8.1-17 IsDirectSummand
6.4-19 IsDirectSumOfModules
6.4-20 IsDistributiveAlgebra
4.11-5 IsDomesticStringAlgebra
4.12-6 IsDynkinQuiver
3.3-6 IsElementaryAlgebra
4.19-4 IsElementOfQuotientOfPathAlgebra
4.14-1 IsEnvelopingAlgebra
4.17-12 IsExactInDegree
10.5-15 IsExactSequence
10.5-14 IsExceptionalModule
6.4-21 IsFiniteComplex
10.5-8 IsFiniteDimensional
4.11-3 IsFiniteGlobalDimensionAlgebra
4.11-6 IsFiniteTypeAlgebra
4.11-25 IsGentleAlgebra
4.11-7 IsGorensteinAlgebra
4.11-8 IsGroebnerBasis
5.2-3 IsHalfInfList
10.2-5 IsHereditaryAlgebra
4.11-9 IsHomogeneousGroebnerBasis
5.2-4 IsIdealInPathAlgebra
4.8-2 IsInAdditiveClosure
6.4-23 IsIndecomposableModule
6.4-22 IsInfiniteNumber
10.2-1 IsInfList
10.2-4 IsInjective
7.2-9 IsInjectiveComplex
11.1-3 IsInjectiveModule
6.4-24 IsIsomorphism
7.2-10 IsKroneckerAlgebra
4.11-10 IsLeftDivisible
6.7-3 IsLeftMinimal
7.2-11 IsLeftUniform
4.5-3 IsMonomialAlgebra
4.11-11 IsMonomialIdeal
4.8-3 IsNakayamaAlgebra
4.11-12 IsNormalForm
4.14-3 IsNthSyzygy
8.1-18 IsOmegaPeriodic
8.1-19 IsomorphicModules
6.4-25 IsomorphismOfModules
7.3-19 IsPath
3.6-1 IsPathAlgebra
4.3-1 IsPathAlgebraMatModule
6.2-1 IsPathAlgebraModule
6.7-4 IsPathAlgebraModuleHomomorphism
7.1-1 IsPathAlgebraVector
6.7-5 IsPrefixOfTipInTipIdeal
5.3-5 IsProjectiveComplex
11.1-2 IsProjectiveModule
6.4-26 IsQPAComplex
10.4-1 IsQuadraticIdeal
4.8-4 IsQuiver
3.3-1 IsQuiverAlgebra
4.11-13 IsQuiverProductDecomposition
4.17-3 IsQuiverVertex
3.6-2 IsQuotientOfPathAlgebra
4.11-2 IsRadicalSquareZeroAlgebra
4.11-14 IsRepeating
10.2-15 IsRightGroebnerBasis
5.4-1 IsRightMinimal
7.2-12 IsRightUniform
4.5-4 IsRigidModule
6.4-27 IsSchurianAlgebra
4.11-15 IsSelfinjectiveAlgebra
4.11-16 IsSemicommutativeAlgebra
4.11-17 IsSemisimpleAlgebra
4.11-18 IsSemisimpleModule
6.4-28 IsShortExactSequence
10.5-16 IsSimpleQPAModule
6.4-29 IsSpecialBiserialAlgebra
4.11-19 IsSpecialBiserialQuiver
4.15-9 IsSplitEpimorphism
7.2-13 IsSplitMonomorphism
7.2-14 IsStoringValues
10.2-13 IsStringAlgebra
4.11-20 IsSurjective
7.2-15 IsSymmetricAlgebra
4.11-21 IsTauPeriodic
9.1-4 IsTauRigidModule
6.4-30 IsTipReducedGroebnerBasis
5.2-5 IsTreeQuiver
3.3-5 IsTriangularReduced
4.11-22 IsTtiltingModule
8.1-20 IsUAcyclicQuiver
3.3-3 IsUniform
4.5-5 IsUnitForm
12.2-1 IsValidString
4.12-1 IsWeaklyNonnegativeUnitForm
12.2-3 IsWeaklyPositiveUnitForm
12.2-4 IsWeaklySymmetricAlgebra
4.11-23 IsZero
6.4-32 7.2-16 IsZeroComplex
10.4-2 IsZeroPath
3.6-4 Iterator
5.3-6 IyamaGenerator
8.1-21 JoinCurveCombinatorialMap
, map, boundary1, boundary2, index 12.3-15 Kernel
7.3-20 KernelInclusion
7.3-20 KernelOfWhat
7.2-17 KroneckerAlgebra
4.15-3 LeadingCoefficient
4.5-7 LeadingCoefficient (of PathAlgebraVector)
6.7-6 LeadingComponent
6.7-7 LeadingMonomial
4.5-8 LeadingPosition
6.7-8 LeadingTerm
4.5-6 LeadingTerm (of PathAlgebraVector)
6.7-9 LeftApproximationByAddM
8.1-28 LeftApproximationByAddTHat
8.1-22 LeftDivision
6.7-10 LeftFacMApproximation
8.1-23 LeftInverseOfHomomorphism
7.2-18 LeftMinimalVersion
7.3-21 LeftmostOccurrenceInvLenInvLex
5.5-9 LeftMutationOfCotiltingModuleComplement
8.1-24 LeftMutationOfTiltingModuleComplement
8.1-24 LeftSubMApproximation
8.1-25 LeftSupportOfQuiverAlgebraElement
4.5-11 LengthOfComplex
10.5-11 LengthOfPath
3.7-3 LiftingCompleteSetOfOrthogonalIdempotents
4.20-1 LiftingIdempotent
4.20-2 LiftingInclusionMorphisms
8.1-26 LiftingMorphismFromProjective
8.1-27 LocalARQuiver
4.12-8 LoewyLength
4.13-10 LowerBound
10.2-35 10.5-10 LowestKnownDegree
10.5-13 LowestKnownPosition
10.2-17 10.2-33 MakeHalfInfList
10.2-7 MakeInfList
10.2-23 MakeInfListFromHalfInfLists
10.2-22 MakeUniformOnRight
4.5-9 MappedExpression
4.5-10 MappingCone
10.7-10 MarkedBoundariesOfCombinatorialMap
, map 12.3-8 MatricesOfPathAlgebraMatModuleHomomorphism
7.2-19 MatricesOfPathAlgebraModule
6.4-33 MatrixOfHomomorphismBetweenProjectives
7.3-22 MaximalCommonDirectSummand
6.4-34 MaximalPathsOfGentleAlgebra
, algebra 12.3-5 MiddleEnd
10.2-28 MiddlePart
10.2-29 MiddleStart
10.2-27 MinimalGeneratingSetOfModule
6.4-36 MinimalLeftAddMApproximation
8.1-28 MinimalLeftApproximation
8.1-28 MinimalLeftFacMApproximation
8.1-23 MinimalLeftSubMApproximation
8.1-25 MinimalRightAddMApproximation
8.1-29 MinimalRightApproximation
8.1-29 MinimalRightFacMApproximation
8.1-42 MinimalRightSubMApproximation
8.1-44 ModulesOfDimVect
13.5-1 MorphismOfChainMap
10.7-6 MorphismOnCoKernel
8.1-31 MorphismOnImage
8.1-31 MorphismOnKernel
8.1-31 MorphismsOfChainMap
10.7-7 N_RigidModule
8.1-45 NakayamaAlgebra
4.15-4 NakayamaAutomorphism
4.13-11 NakayamaFunctorOfModule
6.6-5 NakayamaFunctorOfModuleHomomorphism
6.6-6 NakayamaPermutation
4.13-12 NegativeInfinity
10.2-3 NegativePart
10.2-31 NegativePartFrom
10.2-38 NeighborsOfVertex
3.8-5 NewValueCallback
10.2-14 NonSeperatingCurve
, map 12.3-13 Nontips
5.3-7 NontipSize
5.3-8 NthPowerOfArrowIdeal
4.7-4 NthSyzygy
8.1-32 NumberOfArrows
3.5-7 NumberOfComplementsOfAlmostCompleteCotiltingModule
8.1-33 NumberOfComplementsOfAlmostCompleteTiltingModule
8.1-33 NumberOfIndecomposables
13.3-3 NumberOfNonIsoDirSummands
6.4-35 NumberOfProjectives
13.3-4 NumberOfVertices
3.5-6 ObjectOfComplex
10.5-2 OppositeAlgebraHomomorphism
4.16-4 OppositeNakayamaFunctorOfModule
6.6-7 OppositeNakayamaFunctorOfModuleHomomorphism
6.6-8 OppositePath
4.16-1 OppositePathAlgebra
4.16-2 OppositePathAlgebraElement
4.16-3 OppositeQuiver
3.5-9 OrbitCodim
13.4-5 OrbitDim
13.4-4 OrderedBy
3.2-3 OrderingOfAlgebra
4.4-4 OrderingOfQuiver
3.5-8 OrderOfNakayamaAutomorphism
4.13-13 OriginalPathAlgebra
4.14-6 OutDegreeOfVertex
3.8-4 OutgoingArrowsOfVertex
3.8-2 PartialOrderOfPoset
3.9-4 PathAlgebra
4.2-1 PathAlgebraOfMatModuleMap
7.2-20 PathAlgebraVector
6.7-14 PathsOfLengthTwo
4.7-3 Poset
, for a list P and a set of relations rel 3.9-1 PosetAlgebra
4.15-6 PosetOfPosetAlgebra
4.15-7 PositiveInfinity
10.2-2 PositivePart
10.2-30 PositivePartFrom
10.2-37 PositiveRootsOfUnitForm
12.2-5 PredecessorOfModule
9.1-5 PreImagesRepresentative
7.2-21 PreprojectiveAlgebra
4.19-5 4.19-5 PrimitiveIdempotents
4.19-6 PrintMultiplicityVector
13.4-8 PrintMultiplicityVectors
13.4-9 ProductOfIdeals
4.9-1 ProjDimension
8.1-34 ProjDimensionOfModule
8.1-35 ProjectFromProductQuiver
4.17-5 ProjectiveCover
8.1-36 ProjectivePathAlgebraPresentation
6.7-15 ProjectiveResolution
11.1-4 ProjectiveResolutionOfComplex
11.2-1 ProjectiveResolutionOfPathAlgebraModule
8.1-37 ProjectiveResolutionOfSimpleModuleOverEndo
8.1-38 ProjectiveToInjectiveComplex
11.2-2 ProjectiveToInjectiveFiniteComplex
11.2-2 PullBack
8.1-39 PushOut
8.1-40 QuadraticFormOfUnitForm
12.2-6 QuadraticPerpOfPathAlgebraIdeal
4.9-2 Quiver
, adjacenymatrix 3.2-1 QuiverAlgebraOfAmodAeA
4.18-1 QuiverAlgebraOfeAe
4.18-2 QuiverOfPathAlgebra
4.4-3 QuiverProduct
4.17-1 QuiverProductDecomposition
4.17-2 RadicalOfModule
6.4-37 RadicalOfModuleInclusion
7.3-25 RadicalRightApproximationByAddM
8.1-30 RadicalSeries
6.4-38 RadicalSeriesOfAlgebra
4.13-14 RandomModule
6.4-39 Range
7.2-22 ReadAlgebra
4.21-1 ReducedListInvLenInvLexQPA
5.5-7 RejectOfModule
7.3-26 RelationsOfAlgebra
4.5-13 RemainderOfDivisionInvLenInvLexGroebnerBasis
5.5-6 RemoveEdgeOfCombinatorialMap
, map, edge 12.3-6 RepeatingList
10.2-11 RestrictionViaAlgebraHomomorphism
6.6-9 RestrictionViaAlgebraHomomorphismMap
6.6-10 RightAlgebraModuleToPathAlgebraMatModule
6.1-2 RightApproximationByAddM
8.1-29 RightApproximationByPerpT
8.1-41 RightFacMApproximation
8.1-42 RightGroebnerBasis
5.4-2 RightGroebnerBasisOfIdeal
5.4-3 RightGroebnerBasisOfModule
6.7-16 RightInverseOfHomomorphism
7.2-23 RightMinimalVersion
7.3-24 RightModuleHomOverAlgebra
7.1-2 RightModuleOverPathAlgebra
, no dimension vector 6.1-1 RightModuleOverPathAlgebraNC
, no dimension vector 6.1-1 RightMutationOfCotiltingModuleComplement
8.1-43 RightMutationOfTiltingModuleComplement
8.1-43 RightProjectiveModule
6.7-1 RightSubMApproximation
8.1-44 RIghtSupportOfQuiverAlgebraElement
4.5-11 SaveAlgebra
4.21-2 SeparatedQuiver
3.5-13 Shift
10.2-19 10.2-39 10.6-1 ShiftUnsigned
10.6-2 ShortExactSequence
10.4-7 SimpleModules
6.5-6 SimpleTensor
4.17-8 Size
3.9-2 SocleOfModule
6.4-41 SocleOfModuleInclusion
7.3-27 SocleSeries
6.4-40 Source
7.2-24 SourceOfPath
3.7-1 Splice
10.2-40 StalkComplex
10.4-6 StarOfMapBetweenDecompProjectives
11.2-5 StarOfMapBetweenIndecProjectives
11.2-5 StarOfMapBetweenProjectives
11.2-5 StarOfModule
6.6-11 StarOfModuleHomomorphism
6.6-12 StartPosition
10.2-8 StringsLessThan
4.12-2 SubRepresentation
6.4-42 SubRepresentationInclusion
7.3-28 SumOfSubmodules
6.4-43 SupportModuleElement
6.4-44 SupportOfQuiverAlgebraElement
4.5-11 SymmetricMatrixOfUnitForm
12.2-7 SyzygyCosyzygyTruncation
10.6-9 SyzygyTruncation
10.6-7 TargetOfPath
3.7-2 TargetVertex
6.7-17 TauOfComplex
11.2-3 TensorAlgebrasInclusion
4.17-7 TensorProductDecomposition
4.17-9 TensorProductOfAlgebras
4.17-6 TensorProductOfModules
6.6-13 TiltingModule
8.1-46 Tip
4.5-6 TipCoefficient
4.5-7 TipCoefficientInvLenInvLex
5.5-2 TipInvLenInvLex
5.5-1 TipMonomial
4.5-8 TipMonomialInvLenInvLex
5.5-3 TipReduce
5.3-9 TipReducedListInvLenInvLex
5.5-8 TipReduceGroebnerBasis
5.3-10 TipWalkInvLenInvLex
5.5-4 TitsUnitFormOfAlgebra
12.2-8 TopOfModule
6.4-45 TopOfModuleProjection
7.3-29 TraceOfModule
7.3-30 TransposeOfDual
6.6-14 TransposeOfModule
6.6-16 TransposeOfModuleHomomorphism
6.6-17 TrD
6.6-14 6.6-15 TrivialExtensionOfQuiverAlgebra
4.17-15 TrivialExtensionOfQuiverAlgebraProjection
4.17-16 TruncatedPathAlgebra
4.15-8 TruncateElement
5.5-12 UnderlyingSet
3.9-3 UniformGeneratorsOfModule
6.7-18 UnitForm
12.2-10 UpperBound
10.2-34 10.5-9 Vectorize
6.7-19 VertexPosition
4.5-12 VerticesOfQuiver
3.5-2 WalkOfPath
3.7-4 WidthSearchCombinatorialMap
, map, halfedge 12.3-12 WindingNumber
, map, curve 12.3-9 YonedaProduct
10.6-3 Zero
7.2-25 ZeroChainMap
10.7-3 ZeroComplex
10.4-4 ZeroMapping
7.2-26 ZeroModule
6.5-7
generated by GAPDoc2HTML