[AB] | M. Auslander, R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Colloque en l'honneur de Pierre Samuel (Orsay, 1987). Mèm. Soc. Math. France (N.S.) No. 38 (1989), 5-37. |
[AR] | M. Auslander, I. Reiten, k-Gorenstein algebras and syzygy modules, J. Pure Appl. Algebra 92 (1994), no. 1, 1-27. |
[AR2] | M. Auslander, I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74. |
[B] | H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95, 1960, 466-488 |
[BS] | A. B. Buan, Ø Solberg, Relative cotilting theory and almost complete cotilting modules, CMS Conference Proc., vol. 24 (1998) 77-92 |
[BFVHZ] | W. D. Burgess, K. R. Fuller, E. R. Voss, and B. Huisgen-Zimmermann, The Cartan matrix as an indicator of finite global dimension for artinian rings, Proc. Amer. Math. Soc. 95 (1985) 157-165 |
[BHZ] | W. D. Burgess and B. Huisgen-Zimmermann, Approximating modules by modules of finite projective dimension, J. Algebra 178 (1995) 48-91 |
[E] | S. Eilenberg, A. Rosenberg, D. Zelinsky, On the dimension of modules and algebras, VIII, Nagoya Math. J. 12 (1957), 71-93. |
[C] | Cibils, , |
[Co] | R. R. Colby, Nakayama's conjecture and the double dual functors, J. Algebra 94 (1985), no. 2, 546-557. |
[CF] | R. R. Colby, K. R. Fuller, A note on the Nakayama conjectures, Tsukuba J. Math. 14 (1990), no. 2, 343-352. |
[DH] | P. Dräxler, D. Happel, A proof of the generalized Nakayama conjecture for algebras with $J\sp {2l+1}=0$ and $A/J\sp l$ representation finite, J. Pure Appl. Algebra 78 (1992), no. 2, 161-164 |
[FGKK] | C. D. Feustel, E. L. Green, E. Kirkman, J. Kuzmanovich, Constructing projective resolutions, Comm. Algebra 21 (1993), no. 6, 1869-1887. |
[Gu] | T. H. Gulliksen, A proof of the existence of minimal R-algebra resolutions,, Acta Math., 120 (1968), 53-58. |
[FHZ] | K. R. Fuller and B. Huisgen-Zimmermann, On the generalized Nakayama conjecture and the Cartan determinant problem, Trans. Amer. Math. Soc. 294 (1986) 679-691 |
[FS] | K. R. Fuller, M. Saorin, On the finitistic dimension conjecture for Artinian rings, Manuscripta Math. 74 (1992), no. 2, 117-132. |
[GHZ] | K. R. Goodearl and B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite dimensional algebras, in Algebras and Modules II (I. Reiten, S. O. Smalo, and O. Solberg, Eds.), Canad. Math. Soc. Conf. Proc. Series 24 (1998) 205-225 |
[GHaZ] | E. L. Green, D. Happel, D. Zacharia; Projective resolutions over Artin algebras with zero relations, Illinois J. Math. 29 (1985), no. 1, 180-190. |
[GrHZ] | E. L. Green and B. Huisgen-Zimmermann, Finitistic dimension of artinian rings with vanishing radical cube, Math. Zeitschr. 206 (1991) 505-526 |
[HHZ] | D. Happel and B. Huisgen-Zimmermann, Viewing finite dimensional representations through infinite dimensional ones, Pacific J. Math. 187 (1999) 65-89 |
[HU] | D. Happel, L. Unger, Complements and the generalized Nakayama conjecture, CMS Conf. Proc., vol. 24 (1998) 293-310 |
[HZ1] | B. Huisgen-Zimmermann, Analyzing the structure of representations via approximations, Representation theory of algebras and related topics (Mexico City, 1994), 373-406, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996. |
[HZ2] | B. Huisgen-Zimmermann, Predicting syzygies over monomial relation algebras, Manuscripta Math. 70 (1991) 157-182 |
[HZ3] | B. Huisgen-Zimmermann, Syzygies and homological dimensions over left serial rings, in Methods in Module Theory (G. Abrams, J. Haefner, and K. M. Rangaswamy, Eds.), pp. 161-174, New York (1992) Dekker |
[HZ4] | B. Huisgen-Zimmermann, Bounds on finitistic and global dimension for finite dimensional algebras with vanishing radical cube, J. Algebra 161 (1993) 47-68 |
[HZ5] | B. Huisgen-Zimmermann, Homological assets of positively graded representations, in Representations of Algebras, Ottawa 1992 (V. Dlab and H. Lenzing, Eds.), Canad. Math. Soc. Conf. Proc. Series 14 (1993) 463-475 |
[HZ6] | B. Huisgen-Zimmermann, Field-dependent homological behavior of finite dimensional algebras, Manuscripta Math. 82 (1994) 15-29 |
[HZ7] | B. Huisgen-Zimmermann, The phantom menace in representation theory, in Proc. Internat. Conf. on Algebra and its Applications, Athens, Ohio 1999 (D. V. Huynh, S. K. Jain, and S. T. Lopez-Permouth, Eds.), Contemp. Math. 259 (2000) 247-278 |
[HZS] | B. Huisgen-Zimmermann and M. Saorin, Geometry of chain complexes and outer automorphisms under derived equivalence, Trans. Amer. Math. Soc. (to appear |
[IT] | K. Igusa, G. Todorov, On the finitistic dimension conjecture for artin algebras, unpublished preprint, A write-up of the lecture presented by Sverre O. Smalø at the EURO-conference, Homological Invariants in Representation Theory, in Ioannina, Greece, 1999. |
[IZ] | K. Igusa, D. Zacharia, Syzygy pairs in a monomial algebra, Proc. AMS, 108 (1990), no. 3, 601-604. |
[JL] | C. Jensen, H. Lenzing, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, 2, Gordon and Breach Science Publishers, New York, 1989. |
[N] | R. Martinez-Villa, Contravariantly finite subcategories and torsion theories, Appl. Categ. Structures 5 (1997), no. 4, 321-337. |
[N] | T. Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22, 1958, 300-307. |
[S] | A. Schofield, Bounding the global dimension in terms of the dimension, Bull. London Math. Soc. 17 (1985), no. 4, 393-394. |
[Sc] | R. Schulz, A nonprojective module without self-extensions, Arch. Math. 62 (194), no. 6, 497-500. |
[SS] | S. A. Sikko, S. O. Smalø, Coherent rings and homologically finite subcategories, Math. Scand. 77 (1995), 175-183. |
[T] | H. Tachikawa, Quasi-Frobenius rings and generalizations, QF-3 and QF-1 rings, Notes by Claus Michael Ringel. Lecture Notes in Mathematics, Vol. 351. Springer-Verlag, Berlin-New York, 1973. |
[Ta] | J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math., 1 (1957), 14-27. |
[W] | T. Wakamatsu, Tilting theory and selfinjective algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) 361-390, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht, 1994. |
[Wi] | A. Wiedemann, Integral versions of the Nakayama and finitistic conjectures, J. Algebra 170 (1994), no. 2, 388-399. |
[Z] | D. Zacharia, Graded artin algebra, rational series, and bounds for homological dimensions, J. Algebra 106 (1987), no. 2, 476-483. |
BACK TO MAIN PAGE |
NTNU Fakultet Institutt |
Ansvarligfor innhold: Informasjonsdirektøren, NTNU Teknisk ansvarlig: Webmaster Oppdatert: 25.5.00 |