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EXACT CATEGORIES AND VECTOR SPACE CATEGORIES

PETER DRÄXLER, IDUN REITEN, SVERRE O. SMALØ, AND ØYVIND SOLBERG

with an appendix by B. KELLER

Abstract. In a series of papers starting with [ASo] additive subbifunctors F

of the bifunctor ExtΛ( , ) are studied in order to establish a relative homology
theory for an artin algebra Λ. On the other hand, one may consider the
elements of F (X,Y ) as short exact sequences. We observe that these exact
sequences make mod Λ into an exact category if and only if F is closed in the
sense of [BH].

Concerning the axioms for an exact category we refer to [GR]. In fact, for
our general results we work with subbifunctors of the extension functor for
arbitrary exact categories.

In order to study projective and injective objects for exact categories it
turns out to be convenient to consider categories with almost split exact pairs
because many of the results from [ASo] can easily be adapted to this situation.

Exact categories arise in representation theory for example if one stud-
ies categories of representations of bimodules. Representations of bimodules
gained their importance in studying questions about representation types.
They appear as domains of certain reduction functors defined on modules
categories. These reduction functors are frequently closely related to the func-
tor ExtΛ( , ) and in general do not preserve at all the usual exact structure of
mod Λ.

By showing the closedness of suitable subbifunctors of ExtΛ( , ), we can
equip mod Λ with an exact structure such that some reduction functors actu-
ally become ‘exact’. This allows us to derive informations about the projective
and injective objects in the respective categories of representations of bimod-
ules appearing as domains and even show existence of almost split sequences
for them.

Examples of such domains appearing in practice are the subspace categories

of a vector space category with bonds used in [G-V]. We provide an example
that existence of almost split sequences for them is not a general fact but may
even fail if the vector space category is finite.

1. Exact categories

This section is devoted to transferring some definitions and basic results on rel-
ative theory developed for abelian categories in [BH] and for finitely generated
modules over artin algebras in [ASo] to the context of exact categories. Further-
more, we show how one can construct a new exact structure on a category from
closed subbifunctors of the extension bifunctor induced by a given exact structure.
Moreover, we study when an exact structure on a category A induces an exact
structure on a factor category of A.

1.1. Axioms for exact categories. Let A be an additive category with split
idempotents. From [GR] we recall the following notions. A pair (i, d) of composable
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morphisms X
i
→ Y

d
→ Z in A is called exact if i is a kernel of d and d is a cokernel

of i.

Let E be a class of exact pairs X
i
→ Y

d
→ Z which is closed under isomorphisms.

The morphisms i and d appearing in a pair (i, d) in E are called an inflation and a
deflation of E , respectively. The class E is said to be an exact structure on A and
(A, E) an exact category if the following axioms are satisfied:

E1 The composition of two deflations is a deflation.
E2 For each f in A(Z ′, Z) and each deflation d in A(Y, Z), there is some Y ′ in

A, an f ′ in A(Y ′, Y ) and a deflation d′ : Y ′ → Z ′ such that df ′ = fd′.
E3 Identities are deflations. If de is a deflation, then so is d.
E3op Identities are inflations. If ji is a inflation, then so is i.

This set of axioms is proved to be equivalent to the following one (see [Ke2]):

Ex0 The identity morphism of the zero object id0 is a deflation.
Ex1 The composition of two deflations is a deflation.
Ex2 For each f in A(Z ′, Z) and each deflation d in A(Y, Z), there is a pullback

diagram

Y ′ d′

−−−−→ Z ′

f ′





y





y
f

Y
d

−−−−→ Z

where d′ is a deflation.
Ex2op For each f in A(X,X ′) and each inflation i in A(X,Y ), there is a pushout

diagram

X
i

−−−−→ Y

f





y





y
f ′

X ′ i′
−−−−→ Y ′

where i′ is an inflation.

Since the morphisms d and d′ in Ex2 are deflations, there are corresponding
inflations i : X → Y , i′ : X ′ → Y ′ such that (i, d) and (i′, d′) belong to E . Using the
pullback property one sees that f ′i′ is a kernel of d. Hence by possibly modifying
i′ by a unique isomorphism we may suppose f ′i′ = i. We call the pair (i′, d′) a
pullback pair of (i, d) along f . Dually, we use the notion of a pushout pair.

It is shown in [Ke1, Appendix A] that each skeletally small exact category (A, E)
admits an equivalence F : A → B with a full subcategory B of an abelian category
C, such that B is extension closed, and an exact pair (i, d) is in E if and only if

0→ F (X)
F (i)
−→ F (Y )

F (d)
−→ F (Z)→ 0

is a short exact sequence in C. Moreover, it is established that an exact category
also satisfies Quillen’s axioms from [Qu]. As a particular consequence also the dual
axiom of E1 is satisfied. Thus the duals of all axioms are satisfied. We sum this up
in the following proposition which is used later.

Proposition 1.1. If (A, E) is an exact category, then also (Aop, Eop) is an exact
category where Aop is the opposite category of A and Eop consists of the pairs (d, i)
such that (i, d) is in E .

There is always a unique minimal exact structure E0 on a given additive category
A with splitting idempotents. Namely, E0 consists of all exact pairs (i, d) such that
d is a retraction and i is a kernel of d (or alternatively i is a section and d is a
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cokernel of i). The exact structure E0 is called the split structure. On the other
hand, if A happens to be abelian, then the collection EA of all exact sequences in
A is an exact structure which obviously is the unique maximal exact structure on
A.

1.2. Relative theory in exact categories. Let us fix an exact category (A, E).
For given objects A and C of A we denote by ExtE(C,A) the set of all exact

pairs A
i
→ B

d
→ C in E modulo the equivalence relation which is defined in the

following usual way. Two such pairs (i, d) and (i′, d′) are equivalent if there exists
a commutative diagram as below.

A
i

−−−−→ B
d

−−−−→ C
∥

∥

∥





y

∥

∥

∥

A
i′

−−−−→ B′ d′

−−−−→ C

Using that any additive category has finite direct sums and in particular uniquely
defined diagonal and codiagonal maps and that an exact category has pullback and
pushout pairs, ExtE(C,A) becomes an abelian group under Baer sum.

As above, we denote byAop the opposite category ofA. A functor F : Aop×A →
C is called a bifunctor, where C is some (additive) category. We say that a bifunctor
F is additive if the induced functors F (C, ) and F ( , A) are additive for all objects A
and C in A. Let F : Aop×A→ C be a bifunctor. A subbifunctor G : Aop×A → C
of F is said to be additive if G is an additive bifunctor.

We have that ExtE( , ) defines an additive bifunctor Aop×A → Ab, where Ab
denotes the category of all abelian groups. Let F be a subbifunctor of ExtE( , ).
An exact pair

(i, d) : A
i
→ B

d
→ C

is said to be F -exact if (i, d) is in F (C,A). Being a subbifunctor in particular

means that every pullback and pushout pair of an F -exact pair A
i
→ B

d
→ C given

by maps C ′ → C and A→ A′ is again F -exact. In particular, a subbifunctor F of
ExtE( , ) determines a collection of exact pairs which is closed under isomorphisms,
pushout pairs and pullback pairs. Conversely, any nonempty collection of exact
pairs which is closed under isomorphisms, pushout and pullback pairs, gives rise to
a subbifunctor of ExtE( , ) : Aop×A → Sets in the obvious way.

As we are interested in additive subbifunctors of ExtE( , ), the following result
is useful.

Lemma 1.2. Let F be a subbifunctor of ExtE( , ) : Aop×A → Sets. Then F is
an additive subbifunctor of ExtE( , ) : Aop×A → Ab if and only if F is closed
under direct sums of F -exact pairs.

Next we explain the connection between exact structures and relative theories
given by subbifunctors of ExtE( , ). Let F be a subbifunctor of ExtE( , ). Define
MF to be the class of morphisms in A containing all the deflations and inflations of
all F -exact pairs, and all morphisms whose kernels and cokernels exist and belong
to an F -exact pair.

Consider the following properties for a classM of morphisms in A.

A M contains all zero inflations and deflations in A.
B If α is in M and α = σβτ for some isomorphisms σ and τ , then β is inM.
C α is in M if and only if Kerα and Cokerα exist and they are in M.
D If β (α) and αβ are inflations (deflations) and αβ is inM, then β (α) is inM.
E1 If α and β are inflations inM and αβ is defined, then αβ is in M.
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E2 If α and β are deflations in M and αβ is defined, then αβ is in M.

A class of morphisms satisfying the properties A–D is called an f. class in [BH].
Generalizing results from [BH], we have that the above family MF of morphisms
is an f. class. Note that when F induces an exact structure on A, then E1 and
E2 are automatically satisfied forMF , by Proposition 1.1 and the axiom E1 of an
exact category. Conversely, again generalizing results from [BH], one can show that
if M is an f. class of morphisms, then it naturally gives rise to a subbifunctor of
ExtE( , ). Using that a subbifunctor F of ExtE( , ) : Aop×A → Sets is additive if
and only if the F -exact pairs are closed under direct sums, it follows that a class of
morphisms M in A gives rise to an additive subbifunctor of ExtE( , ) if and only
if M is an f. class and M is closed under direct sums of deflations or equivalently
closed under direct sums of inflations.

Recall from [BH] that an additive subbifunctor F of ExtE( , ) is said to be closed
on the right (left) if F (A, ) (F ( , A)) is half exact on F -exact pairs for all A in A.
The subbifunctor F is said to be closed if it is both left and right closed. Then the
following theorem stated for abelian categories in [BH] is easily generalized to our
setting.

Theorem 1.3 ([BH, Theorem 1.1]). Let F be an additive subbifunctor of ExtE( , ).
Then F is closed on the right (resp. left) if and only if the class MF satisfies E1

(resp. E2).

Let F be an additive subbifunctor of ExtE( , ). It is natural to ask when F
induces an exact structure on A. The subbifunctor F defines a class EF of exact
pairs closed under isomorphisms, namely the F -exact pairs. Since the F -exact pairs
are closed under pullbacks and pushouts, the axioms Ex2 and Ex2op are clearly
satisfied. Since F (0, 0) is a subgroup of ExtE( , ), it contains the split exact pairs
starting and ending in the zero object. Hence the identity morphism id0 of the zero
object occurs as a deflation in an F -exact pair. The axiom Ex1 is satisfied if and
only if F is closed on the left. Hence we have proved the first equivalence of the
following result.

Proposition 1.4. Let (A, E) be an exact category and F an additive subbifunctor
of ExtE( , ) : Aop×A→ Ab. The following assertions are equivalent.

(a) The class EF is an exact structure on A.
(b) F is closed on the left.
(c) F is closed.
(d) F is closed on the right.

Proof. The equivalence of (a) and (b) we already saw. Suppose that F is a left
closed subbifunctor of ExtE( , ) and consequently EF is an exact structure on
A. By Proposition 1.1 the composition of two inflations in this exact structure is
again an inflation. This implies that F is also closed on the right by Theorem 1.3.
Therefore (b) implies both (c) and (d). The remaining implications are clear or
follow by duality.

Using Theorem 1.3 it is proved for abelian categories in [BH] that the intersection
of closed additive subbifunctors of ExtE( , ) again is closed ([BH, Proposition
1.3]). This result generalizes directly to our setting and gives the following using
Proposition 1.4.

Corollary 1.5. Let {Fi}i∈I be a family of additive subbifunctors of ExtE( , ). If
Fi is closed for all i in I, then the intersection ∩i∈IFi is closed.

Another application of the above theorem is the following characterization of
exact structures in abelian categories.



5

Corollary 1.6. If A is an abelian category, then any exact structure E on A is of
the shape EF for some closed additive subbifunctor F of ExtA( , ).

Proof. Let E be any exact structure on A. Then we have seen that the exact pairs
in E are closed under isomorphisms, pullbacks and pushouts. Hence E defines a
closed subbifunctor FE of ExtA( , ). It is proved in [BH, Theorem 1.1] that a
closed subbifunctor of ExtA( , ) is additive. This completes the proof.

1.3. Basic examples of closed subbifunctors. Let (A, E) be an exact category
and let X be a full subcategory of A. For each pair of objects A and C in A define

FX (C,A) = {A→ B → C ∈ E | (X , B)→ (X , C)→ 0 is exact}

and

FX (C,A) = {A→ B → C ∈ E | (B,X )→ (A,X )→ 0 is exact}.

Generalizing a result from [ASo] these constructions give additive subbifunctors of
ExtE( , ). Moreover they are obviously closed.

Proposition 1.7. The additive subbifunctors FX and FX of ExtE( , ) are closed
for any subcategory X of A.

A classical situation for this construction is the following. Let Λ be an artin
algebra and Γ be a subalgebra of Λ. Then it is well-known that the collection of
exact sequences in mod Λ such that they are split exact as sequences over Γ, defines
a subbifunctor F of Ext1Λ( , ) which coincides with FΛ⊗ΓmodΓ.

We have the following inclusions between classes of additive subbifunctors of
ExtE( , ) : Aop×A → Ab.

{FX | X full subcategory of A} ⊂ {closed subbifunctors} ⊂ {all subbifunctors}

Now let A = mod Λ for an artin algebra Λ. Let F be the additive subbifunctor
generated by all almost split sequences in mod Λ. It is easy to see that an exact
sequence η is F -exact if and only if η is a direct sum of split exact and almost
split exact sequences. Suppose mod Λ has an almost split sequence with a non-
projective middle term 0 → A → B → C → 0. Let 0 → DTrB′ → B′′ → B′ → 0
be the almost split sequence ending in a non-projective indecomposable summand
B′ of B. Then the end terms of the complex F (C,DTrB′) → F (B,DTrB′) →
F (A,DTrB′) are zero while the middle term is non-zero. Therefore F is not closed.
This shows that the last inclusion is proper.

Next we observe that for artin algebras Λ of finite type all closed subbifunctors
F of Ext1Λ( , ) are of the form FX for some subcategory of mod Λ. Denote by
P(F ) the full additive subcategory of mod Λ consisting of the modules P such that
HomΛ(P, ) is exact on all F -exact sequences.

Proposition 1.8. Let Λ be an artin algebra of finite type. If F is a closed additive
subbifunctor of Ext1Λ( , ), then F = FP(F ).

Proof. Suppose Λ is an artin algebra of finite type and that F is a closed additive
subbifunctor of Ext1Λ( , ). We want to show that F = FP(F ). Since F ⊂ FP(F ), it
is enough to show that an FP(F )-exact sequence of the form 0→ K → P → C → 0
with P in P(F ) is F -exact, where C is any module in mod Λ which is not in P(F ).

Let C be in mod Λ not in P(F ). Let f1 : P1 ⊕ B1 → C → 0 be the minimal
right almost split map ending in C, where P1 is in P(F ) and B1 does not have any
nonzero summands from P(F ). Then f1 is a deflation in the exact structure EF

on mod Λ defined by F . Let f2 : P2 ⊕ B2 → B1 be the direct sum of the minimal
right almost split maps ending in the different indecomposable direct summands of
B1, where P2 is in P(F ) and B2 does not have any nonzero summands from P(F ).
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Then f1(idP1
, f2) = f1f

′
2 is a deflation in EF . This procedure we can continue and

get a composition of deflations

f1f
′
2f

′
3 · · · f

′
n : P1 ⊕ P2 ⊕ · · · ⊕ Pn ⊕Bn → C,

which is in EF . If Bn is zero for some n, then our claim follows. If Bn is never
zero, then the induced morphism from Bn to C must be zero for some n due to the
Harada-Sai Lemma. Using this n and considering the F -exact sequence it induces,
the Bn-part will split off and we get our desired sequence. This completes the proof
of the proposition.

1.4. Construction of subbifunctors of ExtE( , ) from other exact cate-

gories. We saw above that for any subcategory X of A the subbifunctors FX and
FX are closed subbifunctors of ExtE( , ), and therefore induce an exact structure
on A. In this section we discuss another method for constructing additive subbi-
functors of ExtE( , ) for an exact category A, which again gives rise to an exact
structure on A.

Let (A, E) and (A′, E ′) be two exact categories and let G : A → A′ be an additive
functor. Let F0 be an additive subbifunctor of ExtE′( , ). Define for each pair A
and C of objects in A

F[G,F0](C,A) = {A→ B → C ∈ E | G(A)→ G(B)→ G(C) is F0-exact}.

This does not necessarily define an additive subbifunctor of ExtE( , ) in general. It
is easy to see the following.

Lemma 1.9. The subsets F[G,F0](C,A) for all objects A and C of A defines an
additive subbifunctor of ExtE( , ) : Aop×A→ Ab if and only if the functor G has
the following properties.

(a) If η : A → B → C is F[G,F0]-exact and f : C ′ → C is any morphism in A,
then G applied to the pullback pair of η along f is exact.

(b) If η : A → B → C is F[G,F0]-exact and g : A → A′ is any morphism in A,
then G applied to the pushout pair of η along g is exact.

We are interested in when F[G,F0] induces an exact structure on A. A sufficient
condition for this is given in the next result.

Proposition 1.10. Assume that F[G,F0] is an additive subbifunctor of ExtE( , ).
If F0 is closed, then F[G,F0] is closed.

Proof. Assume that F0 is closed. Assume that A
α
→ B

α′

→ C and A′ β
→ A

β′

→ C ′ are
F[G,F0]-exact. It is proved in [Ke2] that we have the following exact commutative
diagram

A′ β
−−−−→ A

β′

−−−−→ C ′

∥

∥

∥





y

α





y
δ

A′ αβ
−−−−→ B

γ
−−−−→ C ′′





yα′





yδ′

C C

,
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where all rows and columns are exact pairs and the upper right hand square is a
pushout square. The last fact implies that the last column is F[G,F0]-exact. Apply-
ing the functor G we obtain the commutative diagram

G(A′)
G(β)
−−−−→ G(A)

G(β′)
−−−−→ G(C ′)

∥

∥

∥





y
G(α)





y
G(δ)

G(A′)
G(αβ)
−−−−→ G(B)

G(γ)
−−−−→ G(C ′′)





y
G(α′)





y
G(δ′)

G(C) G(C)

,

where the upper row and the columns are F0-exact.
Assume that t : X → G(B) is such that G(γ)t = 0. Then G(δ′)G(γ)t = G(α′)t =

0. Since the middle column is F0-exact, there exists a unique t′ : X → G(A)
such that G(α)t′ = t. We have that 0 = G(γ)G(α)t′ = G(δ)G(β′)t′. Therefore
G(β′)t′ = 0, since the last column is F0-exact. Now using that the upper row is F0-
exact, there exists a unique t′′ : X → G(A′) such that G(β)t′′ = t′ and consequently
G(α)G(β)t′′ = G(α)t′ = t. This shows that G(αβ) is the kernel of G(γ).

Assume that s : G(B) → X is such that sG(αβ) = 0. Then (sG(α))G(β) = 0,
so that there exists a unique s′ : G(C ′) → X such that s′G(β′) = sG(α). Using
the same arguments from [Ke2] as above the upper right hand square of the above
diagram is a pushout square. This gives the existence of a unique s′′ : G(C ′′)→ X
such that s′′G(γ) = s. This shows that G(γ) is the cokernel of G(αβ). Hence it
follows that the middle row η is an exact pair. Since F0 is closed, η is F0-exact and

therefore A′ αβ
→ B → C is F[G,F0]-exact. This show that F[G,F0] is closed.

1.5. Exact categories modulo relations. Let (A, E) be an exact category, and
let R be a relation on A. This means that for each pair of objects A and B in A we
have a subgroup R(A,B) of HomA(A,B) = A(A,B) such that if f is in R(A,B),
g in HomA(B,C) and h in HomA(U,A), then gf is in R(A,C) and fh in R(U,B).
We denote by A /R the factor category whose objects are the same as those of A,
and where the morphisms are given by

HomA / R(A,B) = HomA(A,B)/R(A,B).

If E is an exact structure for A, then we define E /R as the collection of all
pairs (i, d) of morphisms in A /R such that (i, d) ∈ E . We want to give sufficient
conditions on R for E /R to be an exact structure for A /R.

Proposition 1.11. Let (A, E) be an exact category and R a relation on A. Then
(A /R, E /R) is an exact category provided that the following properties are satis-
fied.

(I) For all objects A of A the functors R(A, ) and R( , A) map the exact pairs
in E to short exact sequences of abelian groups.

(II) The relation R is contained in the Jacobson radical of A (i.e. for all objects
A of A and all morphisms r ∈ R(A,A) the map idA +r is an isomorphism.

Proof. Let us first reformulate condition (I) into the following conditions (i) to (iv):
(i) If td is in R where d is a deflation, then t is in R.
(ii) If is is in R where i is an inflation, then s is in R.
(iii) If d : B → C is a deflation and t : X → C is in R, then there exists a

morphism s : X → B with ds = t and s in R.
(iv) If i : A → C is an inflation and u : A → Y is in R, then there exists a

morphism v : C → Y with vi = u and v is in R.
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We now use these four conditions for the proof. Let (i, d) be an exact pair in

A, that is we have A
i
→ B

d
→ C in E . It follows from (i) that d in A /R is an

epimorphism in A /R, and it follows from (ii) that i is a monomorphism.
Let t′ : X → B be such that dt′ is in R. Then by (iii) there is some morphism

s : X → B with s in R and ds = dt′, that is d(s − t′) = 0. Since i : A → B is a
kernel for d : B → C there is then a map a : X → A with ia = −s+ t′ where s is in
R, so ia+R = t′ +R. This shows that i : A→ B is a kernel of d : B → C in A /R.

Similarly we prove that d : B → C is a cokernel of i : A→ B.
Since the deflations in A /R are those induced from A, it follows directly from

the fact that A is an exact category that E /R satisfies the property E1. The same
direct argument shows that E /R has property E2. For properties E3 and E3op we
have to use property (II).

Assume that de is a deflation in A /R, that is de = u for a deflation u in A.
Hence de = u + r for some liftings d and e of d and e and some element r in R.
Since u : B → C is a deflation and r : B → C is in R, there exists a map s : B → B
in R such that r = us by (iii). Hence de = u(idB +s) for some element s in R. By
property (II) idB +s is a deflation, so that u(idB +s) = de is a deflation. Now, since
A is an exact category it follows that d is a deflation and therefore d is a deflation
in A /R.

Similarly we prove that if ji is an inflation in A /R, then i is an inflation in
A /R.

Identities are deflations and inflations in A and therefore they also are deflations
and inflations in A /R. This completes the proof of the proposition.

2. Exact categories with almost split pairs

2.1. Projective and injective objects. Suppose (A, E) is an exact category. An

object P of A is called E-projective if each exact pair X
i
→ Y

d
→ P in E splits

(i.e. lies in E0). The E-injective objects are defined dually. If the underlying exact
structure E is clear, we speak only of projective and injective objects.

Using the following lemma one sees that the E-projective objects are precisely

those objects P such that for each pair X
i
→ Y

d
→ Z in E the sequence

0→ A(P,X) −→ A(P, Y ) −→ A(P,Z)→ 0

obtained by applying the functor A(P, ) is a short exact sequence of abelian groups.
Of course, E-injectives are characterized in the dual fashion.

Lemma 2.1. Suppose that in an exact category (A, E) there is a commutative di-
agram

A
i

−−−−→ B
d

−−−−→ C




y
f





y

g





y
h

A′ i′

−−−−→ B′ d′

−−−−→ C ′

such that (i, d) and (i′, d′) are exact pairs in E. Then there exists a morphism
s : B → A′ such that si = f if and only if there exists a morphism t : C → B ′ such
that d′t = h.

We denote by P(E) and I(E) the full categories of A formed by the projective
and injective objects. The subcategories P(E) and I(E) are closed under finite
direct sums and direct summands.
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2.2. Almost split maps and pairs. From now on we restrict ourselves to Krull-
Schmidt categories, that is, additive categories where each object is a finite direct
sum of indecomposable objects with local endomorphism rings. Thus the indecom-
posable objects coincide with those having local endomorphism rings.

A morphism g : Y → Z in a Krull-Schmidt category A is called right almost
split if it is not a retraction and for any non-retraction t : A → Z there exists a
morphism s : A → Y such that t = gs. Given a right almost split map g : Y → Z
the set gA(Z, Y ) is the unique maximal proper right ideal of the ring A(Z,Z) and
consequently Z has a local endomorphism ring. In particular, Z has to be indecom-
posable. We say that A has right almost split morphisms if for all indecomposable
objects Z there exists a right almost split morphism ending in Z. Dually we define
left almost split morphisms. We say that A has almost split morphisms if A has
right and left almost split morphisms.

A morphism g : Y → Z is called right minimal if every endomorphism s : Y → Y
with the property that g = gs, is an isomorphism. Minimal right almost split
morphisms ending in an object Z are essentially unique. Namely, if g : Y → Z and
g′ : Y ′ → Z are right minimal almost split morphisms, then there is an isomorphism
s : Y ′ → Y satisfying g′ = gs. If right almost split morphisms exist, it is not clear
a priori that minimal right almost split morphisms will exist. We show next that
this is the case in our setting.

Proposition 2.2. Let A be a Krull-Schmidt category and Z an object of A in
which a right almost split map ends. Then there exists a minimal right almost split
map Y → Z.

Proof. It is easy to see that one obtains a minimal right almost split map by choos-
ing a right almost split map Y → Z in A such that Y is a direct sum of indecom-
posable objects with the smallest possible number of summands.

Suppose now that the Krull-Schmidt category A carries an exact structure E .
Using Lemma 2.1, the proof of the following proposition coincides with the usual
one for module categories.

Proposition 2.3. Suppose (A, E) is an exact category such that A is Krull-Schmidt

and X
f
→ Y

g
→ Z is an exact pair in E. Then the following assertions are equivalent.

(i) f is minimal left almost split.
(ii) g is minimal right almost split.
(iii) f is left almost split and g is right almost split.

An exact pair X
f
→ Y

g
→ Z in E as in the above proposition is said to be

an almost split pair. Clearly such an almost split pair can only exist provided
X is indecomposable non-E-injective and Z is indecomposable non-E-projective.
The exact category (A, E) is said to have almost split pairs if A has almost split
morphisms and moreover for all indecomposable non-projective objects Z there

exists an almost split pair X
f
→ Y

g
→ Z and dually for all indecomposable non-

injective objects X there exists an almost split pair X
f
→ Y

g
→ Z.

The uniqueness of minimal almost split maps shows that almost split pairs X
f
→

Y
g
→ Z are uniquely determined by X or Z. We introduce the notation X = τZ

(and Z = τ−1X) whenever X
f
→ Y

g
→ Z is an almost split pair.

Of course the main example of exact categories having almost split sequences
are the categories of finitely generated modules over an artin algebra Λ, where τ
coincides with DTr. One obtains trivial examples by considering Krull-Schmidt
categories A equipped with the split structure E0. For this structure each object
is projective and injective. Hence (A, E0) has almost split pairs provided A has
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almost split morphisms (which is always the case if A has only finitely many inde-
composable objects up to isomorphism). Further examples of exact categories with
almost split pairs appearing as subcategories of module categories can be found in
[Au] and [ASm].

The following result is well-known for module categories over artin algebras [Au]
(see also [ARS, Ch. IV]).

Proposition 2.4. Let (A, E) be an exact category with almost split pairs. Then

for an exact pair A
f
→ B

g
→ C in E and an indecomposable non-projective object X

in A the following are equivalent.
(a) Every map X → C factors through g : B → C.
(b) Every map A→ τX factors through f : A→ B.

Proof. Assume first that every map X → C factors through g : B → C. Assume
to the contrary that there is some map h : A→ τX which does not factor through
f : A→ B. Taking the pushout we have the following exact commutative diagram.

A
f

−−−−→ B
g

−−−−→ C




y
h





y

c

∥

∥

∥

τX
u

−−−−→ E
v

−−−−→ C

with the lower row non-split.

Let τX
α
→ Y → X be an almost split pair. Since u : τX → E is not a section,

we have an exact commutative diagram

τX
α

−−−−→ Y −−−−→ X
∥

∥

∥





y

a





y
b

τX
u

−−−−→ E
v

−−−−→ C

.

By our assumption the map b : X → C factors through g : B → C, it follows
that is there is a map t : X → B such that b = gt. Therefore b = vct = vt′ for
t′ = ct : X → E. By Lemma 2.1 there is a map s : Y → τX such that sα = idτX ,
so that the almost split pair splits, a contradiction.

The dual argument completes the proof.

We put τP = 0 for all indecomposable projective objects ofA and dually τ−I = 0
for all indecomposable injective objects. Finally, we extend τ and τ− to all objects
of A in the obvious way. Then the previous proposition has the following immediate
consequence which is a generalization of a result from [ASo].

Corollary 2.5. If X is any full subcategory of A, then FX = F τ X .

2.3. Injective and projective objects for relative theories. Let (A, E) be an
exact category and let F be an additive subbifunctor of ExtE( , ) : Aop×A → Ab.
With F we associate the full subcategory P(F ) of A consisting of all objects P such
that if A → B → C is F -exact, the sequence 0 → (P,A) → (P,B) → (P,C) → 0
is exact. This subcategory is called the subcategory of F -projective objects (see
[ASo]). Dually we define the full subcategory I(F ) of F -injective objects.

For two subbifunctors F1 ⊆ F2 we have P(F1) ⊇ P(F2) and I(F1) ⊇ I(F2). In
particular, P(E) = P(ExtE( , )) is contained in P(F ) and I(E) = I(ExtE( , )) is
contained in I(F ) for any F .

Using Proposition 2.4 we prove that the F -projective and F -injective objects are
closely related in an exact category with almost split pairs.

Proposition 2.6. Let (A, E) be an exact category with almost split pairs and F an
additive subbifunctor of ExtE( , ).
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(a) The subcategory I(F ) is equal to τ(P(F )) ∪ I(E).
(b) The subcategory P(F ) is equal to τ−(I(F )) ∪ P(E).

Proof. It follows directly from the Proposition 2.4 that τ P(F ) is contained in I(F )
and that τ−1(I(F )) is contained in P(F ).

Let X be indecomposable and in I(F ) but not in I(E). Then again by Propo-
sition 2.4 we get that X ′ = τ−X is in P(F ) and X = τ(X ′).

The following characterization of the F -projective and F -injective objects for a
subbifunctor F in terms of almost split pairs is useful. The proof easily generalizes
from [ASo].

Proposition 2.7. Let (A, E) be an exact category with almost split pairs and F an
additive subbifunctor of ExtE( , ).

(a) An indecomposable non-projective object P is in P(F ) if and only if the
almost split pair τP → E → P is not F -exact.

(b) An indecomposable non-injective object I is in I(F ) if and only if the almost
split pair I → E → τ−I is not F -exact.

2.4. Almost split pairs under relative theories and modulo relations. Let
us return to the case that F is a closed subbifunctor of the bifunctor ExtE( , ) for
a given exact category (A, E). We saw in section 1 that such a subbifunctor yields
a new exact structure EF on A which is contained in E . From the discussion of
the projective and injective objects in EF at the beginning of this section it follows
that P(EF ) = P(F ) and I(EF ) = I(F ).

Using Proposition 2.7 we get the following result.

Proposition 2.8. Let (A, E) be an exact category and F a closed additive subbi-
functor of ExtE( , ). If (A, E) has almost split pairs, then the exact category (A, EF )
has almost split pairs. These are the almost split pairs in E which do not end in an
F -projective object or equivalently do not start in an F -injective object.

Proof. Since F is closed, F induces an exact structure on A by Proposition 1.4.
The claim now follows directly from Proposition 2.7.

We end this section with the following observation.

Proposition 2.9. Let (A, E) be an exact category and let R be a relation on A
satisfying conditions (I) and (II) in Proposition 1.11.

(a) Then P(E /R) = P(E) and I(E /R) = I(E).
(b) A morphism f : B → C is right (left) almost split in A if and only if f : B →

C is right (left) almost split in A /R.
(c) An exact pair (f, g) is an almost split pair in A if and only if (f, g) is an

almost split pair in A /R.
(d) A has almost split morphisms (almost split pairs) if and only if A /R does.

Proof. It follows from Proposition 1.11 that E /R is an exact structure on A /R.
Further we only have to observe that it follows from (II) that a morphism h in A is
an isomorphism if and only if h is an isomorphism in A /R, so that h is a retraction
in A if and only if h is a retraction in A /R.

3. Examples

The main objective in this section is to illustrate the constructions and the
results of the previous sections by concrete examples. The examples, or more
correctly the family of examples, we consider are all given over an artin algebra Λ
in terms of an ideal a in Λ. We write HomΛ(a, ) = G, which is a left exact additive
subfunctor of the identity idmodΛ : mod Λ → mod Λ. Denote by G′ = idmodΛ /G
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the associated quotient functor. Then we study the subbifunctors F[G,0], F[G′,0] and
their intersection, and we show that they induce new exact structures on mod Λ
having almost split pairs. Moreover, the relation on mod Λ given by R = {f : A→
B | G(f) = 0 = G′(f)} with the exact structure on mod Λ given by the intersection
F[G,0] ∩ F[G′,0] induce an exact structure on mod Λ/R having almost split pairs.

We also study the injectives and projectives of the above subbifunctors of Ext1Λ( , )
and investigate when they have enough injectives or projectives.

Throughout this section let Λ be artin algebra and a an ideal in Λ.

3.1. Examples of the constructions in section 1. Let G =
HomΛ(Λ/a, ) : mod Λ → mod Λ and G′ be as above. Denote by iX : G(X) → X
the natural inclusion for a Λ-module X in mod Λ.

Let F0 be a closed additive subbifunctor of Ext1Λ( , ). We want to show that
F[G,F0] and F[G′,F0] define additive subbifunctors of Ext1Λ( , ) which induce exact
structures on mod Λ. This is based on the following lemmas.

Lemma 3.1. Let 0→ A→ B → C → 0 be an exact sequence. Then

0→ G(A)→ G(B)→ G(C) → 0

is exact if and only if

0→ G′(A)→ G′(B)→ G′(C)→ 0

is exact.

Proof. This observation follows immediately from the Snake Lemma.

Lemma 3.2. Let η : 0 → A → B → C → 0 be an exact sequence such that G(η)
(G′(η)) is F0-exact.

(a) Let α : C ′ → C be a morphism in mod Λ and let η′ : 0→ A→ B′ → C ′ → 0
be the pullback sequence of η along the morphism α. Then G(η′) (G′(η′)) is F0-
exact.

(b) Let α : A→ A′ be a morphism in mod Λ and let η′ : 0→ A′ → B′ → C → 0 be
the pushout sequence of η along the morphism α. Then G(η′) (G′(η′)) is F0-exact.

Proof. (a) Let η : 0→ A→ B → C → 0 be an exact sequence such that G(η) : 0→
G(A)→ G(B)→ G(C)→ 0 is F0-exact. Let α : C ′ → C be a morphism in mod Λ.
Define η′ to be the pullback of η by the morphism α. We want to show that G(η′)
is exact.

Since G is left exact, iCG(α) = αiC′ and the pullback Ext1Λ(G(α), G(A))(G(η))
is an exact sequence with all terms annihilated by the ideal a, it follows that G(η′)
is exact and equal to Ext1Λ(G(α), G(A))(G(η)). Therefore the sequence is F0-exact.

(b) Let η : 0 → A → B → C → 0 be an exact sequence such that G(η) : 0 →
G(A) → G(B) → G(C) → 0 is F0-exact. Let α : A→ A′ be a morphism in mod Λ.
We have the following pushout diagram.

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0




y

α





y

∥

∥

∥

0 −−−−→ A′ −−−−→ B′ g
−−−−→ C −−−−→ 0

This diagram gives rise to the following exact commutative diagram

0 −−−−→ G(A) −−−−→ G(B) −−−−→ G(C) −−−−→ 0




y
G(α)





y

∥

∥

∥

0 −−−−→ G(A′) −−−−→ G(B′)
G(g)
−−−−→ G(C)
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It follows directly from this commutative diagram that G(g) is an epimorphism and
0→ G(A′)→ G(B′)→ G(C)→ 0 is exact. Since the F0-exact sequences are closed
under pushouts, this sequence is F0-exact.

The statements for G′ are proved similarly.

It now follows from Lemma 1.9 that F[G,F0] and F[G′,F0] are additive subbifunc-

tors of Ext1Λ( , ). Moreover, we have the following direct consequence of Proposition
1.10 and Corollary 1.5.

Proposition 3.3. Let Λ be an artin algebra with an ideal a, and let G =
HomΛ(Λ/a, ) and G′ be as above, and let F0 be a closed additive subbifunctor
of Ext1Λ( , ). Then the above functors F[G,F0], F[G′,F0] and F[G,F0] ∩ F[G′,F0] define
exact structures on mod Λ.

This can be applied to the special cases F0 = (0) and F0 = Ext1Λ( , ), that is,
the F0-exact sequences are the split ones and all exact sequences respectively.

In the case when F0 = (0) we want to define a relation R on the category mod Λ
with exact structure given by F[G,0] ∩F[G′,0], such that mod Λ/R is exact with the
induced structure.

Proposition 3.4. Let Λ be an artin algebra with an ideal a, and let G =
HomΛ(Λ/a, ) and G′ = idmodΛ /G be as before, with exact structure on mod Λ
given by F = F[G,0]∩F[G′,0]. Let R be the relation on mod Λ given by R = {f : A→
B | G(f) = 0 = G′(f)}. Then EF /R is an exact structure on mod Λ/R.

Proof. We want to show that R satisfies the conditions (I) and (II) of Proposi-
tion 1.11, with respect to the F -exact structure on mod Λ. Note that f : A→ B is
in R if and only if there is a factorization A→ G′(A)→ G(B)→ B.

We show that the four conditions (i)–(iv) of the proof of Proposition 1.11, which
are equivalent to condition (I), are satisfied.

(i) Let p : A → B and t : B → C be such that tp : A → C is in R and p
is a deflation. Then G(p) : G(A) → G(B) and G′(p) : G′(A) → G′(B) are split
epimorphisms. Since G(tp) = G(t)G(p) : G(A) → G(C) is zero, it follows that
G(t) = 0. Since G′(tp) = G′(t)G′(p) : G′(A) → G′(C) is zero, it follows that
G′(t) = 0. This show that t is in R.

(ii) Let s : A→ B and let i : B → C be an inflation, and assume that is : A→ C
is in R. Then G(i) : G(B)→ G(C) and G′(i) : G′(B)→ G′(C) are split monomor-
phisms. Since G(is) = G(i)G(s) : G(A) → G(C) is zero, it follows that G(s) = 0.
Since G′(is) = G′(i)G′(s) : G′(A) → G′(C) is zero, it follows that G′(s) = 0. This
shows that s is in R.

(iii) Let p : B → C be a deflation and let t : X → C be in R. Consider

0 −−−−→ G(X) −−−−→ X −−−−→ G′(X) −−−−→ 0




y
G(t)





y
t





y
G′(t)

0 −−−−→ G(C) −−−−→ C −−−−→ G′(C) −−−−→ 0
x





G(p)

x





p

x




G′(p)

0 −−−−→ G(B) −−−−→ B −−−−→ G′(B) −−−−→ 0

.

Then G(p) : G(B) → G(C) is a split epimorphism, so choose u : G(C) → G(B)
such that G(p)u = idG(C). Since t : X → C is in R, we have a factorization of t as

X → G′(X)
t′
→ G(C) → C, and consequently s : X → G′(X)

ut′
→ G(B) → B. We

have s in R, and clearly ps = t.
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(iv) Let i : A→ C be an inflation and u : A→ Y in R. Consider

0 −−−−→ G(C) −−−−→ C −−−−→ G′(C) −−−−→ 0
x




G(i)

x




i

x




G′(i)

0 −−−−→ G(A) −−−−→ A −−−−→ G′(A) −−−−→ 0




y
G(u)





y

u





y
G′(u)

0 −−−−→ G(Y ) −−−−→ Y −−−−→ G′(Y ) −−−−→ 0

.

Then G′(i) : G′(A)→ G′(C) is a split monomorphism, so choose v : G′(C)→ G′(A)
such that sG′(i) = idG′(A). Since u is in R, the morphism u : A → Y factors as

A → G′(A)
u′

→ G(Y ) → Y . Define v : C → Y by C
u
→ G′(C)

u′s
→ G(Y ) → Y . Then

v is in R and clearly vi = u.
(II) Let X be any module in mod Λ and r a morphism in R(X,X). Then r is of

the form iXr
′πX for some morphism r′ : G′(X)→ G(X), where iX : G(X)→ X and

πX : X → G′(X) are the natural inclusion and projection, respectively. It follows
that r2 = 0. Therefore (idX +r)(idX −r) = idX and idX +r is an isomorphism for
all X in mod Λ and r in R(X,X). This finishes the proof.

We have the following immediate corollaries of Propositions 3.3 and 3.4.

Corollary 3.5. Let Λ be an artin algebra with an ideal a, let G and G′ be as before
and let F0 be a closed additive subbifunctor of Ext1Λ( , ). Then mod Λ with the exact
structures induced from the subbifunctors F[G,F0], F[G′,F0] and F[G,F0] ∩ F[G′,F0] of

Ext1Λ( , ) all have almost split pairs.

Corollary 3.6. Let Λ be an artin algebra with an ideal a, and let G and G′ be as
before, with exact structure on mod Λ given by F = F[G,0] ∩ F[G′,0]. Let R be the
relation on mod Λ given by R = {f : A→ B | G(f) = 0 = G′(f)}. Then mod Λ/R

with the exact structure induced from F modulo the relation R has almost split
pairs.

In view of the above results it is evident that it is important to be able to
calculate the relative projectives and relative injectives. Before we do this in some
classes of examples we need to prove some elementary properties of the functor
HomΛ(Λ/a, ).

3.2. Elementary properties of HomΛ(Λ/a, ). LetG = HomΛ(Λ/a, ) : mod Λ→
mod Λ and G′ = idmodΛ /G as before. In this subsection we first observe that all ad-
ditive left exact subfunctors of the identity are naturally isomorphic to HomΛ(Λ/a, )
for some ideal a, and give some elementary properties of these subfunctors of the
identity.

Lemma 3.7. If G is an additive left exact subfunctor of the identity functor, then

G = anna( ) ' HomΛ(Λ/a, )

for an ideal a in Λ.

Proof. We have that D ◦G ◦D : mod Λop → mod Λop is a right exact additive func-
tor. Then D ◦G ◦D ' –⊗Λ DGD(Λ). Since it is a quotient functor of the identity
functor, DGD(Λ) ' Λ/a for an ideal a in Λ. We have that

G ' D(D( )⊗Λ Λ/a) ' HomΛ(Λ/a, )

by the adjoint isomorphism. This completes the proof of the lemma.

Next we give some properties of additive left exact subfunctors of the identity
functor that follow easily from the above characterization of these functors.
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Proposition 3.8. Let a be an ideal in Λ and let G and G′ be as before. Then we
have the following.

(a) G : mod Λ→ mod Λ/a is a dense functor.
(b) G2 = G.
(c) G′

◦G = 0.
(d) G ◦G′ = HomΛ(Λ/a2, )/HomΛ(Λ/a, ).
(e) ImG′ is closed under submodules.

Proof. (a) Let X be a Λ/a-module. Then G(X) = HomΛ(Λ/a, X) = X and
G : mod Λ→ mod Λ/a is a dense functor.

(b) Since G = anna( ) this follows directly.
(c) Applying the exact sequence of functors

0→ G→ idmodΛ → G′ → 0

to an object G(X) we obtain the exact sequence

0→ G2(X)→ G(X)→ G′
◦G(X)→ 0.

By (b) we get that G′
◦G(X) = 0, hence G′

◦G = 0.
(d) Using that G = HomΛ(Λ/a, ) = anna( ) it is easy to see that for an arbitrary

module X in mod Λ

G ◦G′(X) = G(X/G(X)) = HomΛ(Λ/a2, X)/G(X),

since anna(X/ anna(X)) = anna2(X)/ anna(X). Hence, we get that

G ◦G′ = HomΛ(Λ/a2, )/G.

(e) LetM be in mod Λ andX a submodule ofG′(M). Then we have the following
commutative diagram.

0 −−−−→ G(M) −−−−→ E −−−−→ X −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ G(M) −−−−→ M −−−−→ G′(M) −−−−→ 0

Applying G to this diagram and using (b), it follows that G(E) = G(M) and
therefore G′(E) = X .

These easy observations naturally lead to some interesting special cases as we
see later.

Corollary 3.9. Let G = HomΛ(Λ/a, ) for an ideal a in Λ and let G′ = idmodΛ /G.
(a) Then (i) a2 = (0), (ii) G ◦G′ = G′ and (iii) (G′)2 = 0 are equivalent state-

ments.
(b) Then (i) a2 = a, (ii) G ◦G′ = 0 and (iii) (G′)2 = G′ are equivalent state-

ments.

Proof. (a) Using the exact sequence of functors 0 → G → idmodΛ → G′ → 0, the
equivalence of (ii) and (iii) is immediate.

If a2 = (0), we get from Proposition 3.8 (d) that G ◦G′ = idmodΛ /G = G′.
Conversely, assume that (G′)2 = 0. Then for a Λ-module X we have that

(0) = G′
◦G′(X) = G′(X/G(X)) = (X/G(X))/G(X/G(X))

= (X/G(X))/(HomΛ(Λ/a2, X)/G(X)) ' X/HomΛ(Λ/a2, X)

It follows that HomΛ(Λ, X) = HomΛ(Λ/a2, X) = anna2(X) for all Λ-modules X
in mod Λ. In particular this is true for X = Λ, which implies that Λ = anna2(Λ)

and therefore a2 = (0).
(b) Using the exact sequence of functors 0 → G → idmodΛ → G′ → 0, the

equivalence of (ii) and (iii) is immediate.
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If a2 = a, then it follows from Proposition 3.8 (d) that G ◦G′ = 0.
Conversely, assume that G ◦G′ = 0. Hence HomΛ(Λ/a2, X) = HomΛ(Λ/a, X),

or equivalently anna2(X) = anna(X), for all Λ-modules X in mod Λ. In particular

this is true for X = Λ/a2, from which it follows easily that a ⊂ a2 and therefore
a = a2.

3.3. The projectives and injectives of the subbifunctors F[G,0] and F[G′,0].

Let G = HomΛ(Λ/a, ) : mod Λ → mod Λ for an ideal a in Λ and G′ = idmodΛ /G,
where idmodΛ : mod Λ→ mod Λ is the identity functor. Denote by F[G] the subbi-

functor F[G,0] and by F[G′] the subbifunctor F[G′,0] of Ext1Λ( , ). By Proposition 3.4
they are both additive subbifunctors. Now we describe the projectives and injec-
tives for these subbifunctors of Ext1Λ( , ), in general for the former and in some
special cases for the latter.

Since G = G2, the functor G has the following property. For any homomorphism
f : G(X) → Y for X and Y in mod Λ the image Im f is contained in G(Y ). This
is the crucial observation needed in the characterization of the subbifunctor F[G] of

Ext1Λ( , ) below.

Proposition 3.10. Let G = HomΛ(Λ/a, ) for an ideal a in Λ and let F[G] be as
above. Then

F[G] = FIm G = FmodΛ/a.

In particular,

P(F[G]) = P(Λ) ∪ ImG = P(Λ) ∪mod Λ/a.

Proof. Since ImG = mod Λ/a, we have FIm G = FmodΛ/a.

Assume that η : 0 → A → B
g
→ C → 0 is F[G]-exact. Let X be a module in

add(ImG) = ImG and f : X → C a homomorphism. Since G2 = G, we have that
X = G(X) and therefore Im f is contained in G(C). Since G(η) is split exact, the
homomorphism f factors through g. This shows that F[G] is contained in FIm G.

Assume that η : 0 → A → B
g
→ C → 0 is FIm G-exact. Since G(C) is in

ImG, there exists a homomorphism h : G(C) → B such that g ◦h = iC , where
iC : G(C) → C is the natural inclusion. The image Imh is contained in G(B).
Hence g ◦ iB ◦h = iC ◦G(g) ◦h = iC ◦ idG(C). Since iC is a monomorphism,
G(g) ◦h = idG(C) and hence G(η) is split exact. It follows that FIm G = FmodΛ/a is
contained in F[G], and therefore F[G] = FIm G. Moreover, P(F[G]) = P(Λ)∪ ImG =
P(Λ) ∪mod Λ/a.

It seems not so easy to get a description of the relative projectives or equivalently
the relative injectives for the subbifunctor F[G′] of Ext1Λ( , ) in general. Below we
give a description in a special case.

Proposition 3.11. Let G = HomΛ(Λ/a, ) for an ideal a in Λ with a2 = a. Then

F[G′] = F add(Im G′) ∩ FΛ/a = F add(Im G′)∪add D TrΛ(Λ/a).

In particular, we have that

I(F[G′]) = I(Λ) ∪ add(ImG′) ∪ addDTrΛ(Λ/a)

and

P(F[G′]) = P(Λ) ∪ addTrΛD(ImG′) ∪ addΛ/a.

Proof. Assume that η : 0 → A
f
→ B → C → 0 is F[G′]-exact. In particular, the

complex 0 → G(A) → G(B) → G(C) → 0 is exact, hence the sequence η is FΛ/a-
exact.
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Now we show that η is F add(Im G′)-exact. Let X be a module in add(ImG′) and
g : A → X a homomorphism. Then there exists X ′ in mod Λ such that X is a
direct summand of G′(X ′). Let g′ : A→ G′(X ′) be the homomorphism induced by
g. Then we have the following commutative diagram

η : 0 −−−−→ A
f

−−−−→ B −−−−→ C −−−−→ 0




y
g′





y

∥

∥

∥

η′ : 0 −−−−→ G′(X ′) −−−−→ B′ −−−−→ C −−−−→ 0
∥

∥

∥





y





y

G′(η′) : 0 −−−−→ G′(X ′) −−−−→ G′(B′) −−−−→ G′(C) −−−−→ 0

The sequence η′ : 0 → G′(X ′) → B′ → C → 0 is the pushout of η using the
homomorphism g′, hence η′ is F[G′]-exact. Therefore G′(η′) is split exact, which is
the last row in the diagram above. It follows that the homomorphism g′ factors
through f and therefore also g factors through f . This shows that F[G′] is contained

in F add(Im G′).
It follows from the above that F[G′] is contained in F add(ImG′) ∩ FΛ/a, which is

equal to F add(Im G′)∪addD TrΛ(Λ/a).

Assume that η : 0 → A
f
→ B

g
→ C → 0 is F add(Im G′)∪add D TrΛ(Λ/a)-exact. Then

the sequence G(η) is exact and therefore G′(η) is exact by Lemma 3.1.
Then we have the following exact commutative diagram

0 −−−−→ A
f

−−−−→ B −−−−→ C −−−−→ 0




y

pA





y





y

0 −−−−→ G′(A)
G′(f)
−−−−→ G′(B) −−−−→ G′(C) −−−−→ 0

.

Since η is F add(Im G′)∪addD TrΛ(Λ/a)-exact, there exists a homomorphism h : B →
G′(A) such that h ◦ f = pA. Applying the functor G′ we get that G′(h) ◦G′(f) =
idG′(A), hence G′(η) is split exact and η is F[G′]-exact. This shows that the subbi-

functor F add(Im G′)∪addD TrΛ(Λ/a) is contained in F[G′].

We have now shown that F[G′] = F add(Im G′)∪add D TrΛ(Λ/a). It follows from this
that I(F[G′]) = I(Λ) ∪ add(ImG′) ∪ addDTrΛ(Λ/a).

Next we describe a subcategory which always is contained in the relative injec-
tives for F[G′].

Proposition 3.12. Let X = {X ∈ mod Λ | G′(X) = X}. Then X ⊂ I(F[G′]) and

F[G′] ⊂ F
X .

Proof. Let X be a module in X and η : 0 → X
f
→ Y → Z → 0 an F[G′]-exact

sequence. Then we have the following exact commutative diagram

0 −−−−→ X
f

−−−−→ Y −−−−→ Z −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ G′(X) = X
G′(f)
−−−−→ G′(Y ) −−−−→ G′(Z) −−−−→ 0

.

Since G′(η) is split exact, f is a split monomorphism and η is also split exact.
Therefore X ⊂ I(F[G′]) and F[G′] ⊂ F

X .

We are mainly interested in calculating the subbifunctor F = F[G] ∩ F[G′] of

Ext1Λ( , ). Then we have that P(F[G]) ∪ P(F[G′]) is contained in P(F ). Hence,
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we have that ImG is contained in P(F ) by Proposition 3.10. If X and Y are two
subcategories of mod Λ and FX and FY are the two corresponding subbifunctors of
Ext1Λ( , ), then FX ∩ FY = FX ∪Y . Using this observation, Propositions 3.10 and
3.11 we obtain the following corollary.

Corollary 3.13. Suppose G = HomΛ(Λ/a, ) for an ideal a in Λ with a2 = a. Then

F[G] ∩ F[G′] = FIm G ∩ F
add(Im G′)∪add D TrΛ(Λ/a) = F add(Im G′)∪D TrΛ(modΛ/a).

In particular,

I(F[G] ∩ F[G′]) = I(Λ) ∪ add(ImG′) ∪DTrΛ(mod Λ/a)

and

P(F[G] ∩ F[G′]) = P(Λ) ∪ TrΛD ImG′ ∪mod Λ/a.

Suppose that G = HomΛ(Λ/a, ) for some ideal a in Λ. Let b be the ideal given
by G(Λ) = {λ ∈ Λ | aλ = (0)}. For any Λ-module M in mod Λ we have that
bm is in G(M) for any b in b and m in M , since for any a in a we have that
a · (bm) = (ab)m = 0. Therefore bM ⊂ G(M) and hence we get an induced functor

G′ : mod Λ→ mod Λ/b.

A Λ/b-module M is semisimple if and only if M is a semisimple Λ-module. Hence,
Λ/b is a semisimple ring if and only if r is contained in b or equivalently a is
semisimple as a right Λ-module. Using these observations we have the following
description of the intersection F[G] ∩ F[G′] in this case.

Proposition 3.14. Suppose that G = HomΛ(Λ/a, ) for some twosided ideal a in
Λ with a being a semisimple right Λ-module.

(a) F[G′] = FΛ/a.
(b) F[G] ∩ F[G′] = F[G] = FmodΛ/a.

Proof. (a) From the above we have that G′ : mod Λ → mod Λ/b, where b = {λ ∈
Λ | aλ = (0)} and Λ/b is semisimple. Therefore given an exact sequence η : 0 →
A → B → C → 0, then G′(η) is split exact if and only if G(η) is exact. Hence,
F[G′] = FΛ/a.

(b) This follows immediately from (a) and Proposition 3.10, since under our
assumptions F[G] ⊂ F[G′].

The next result characterizes when a module X is in I(F[G] ∩ F[G′]).

Proposition 3.15. A module X is in I(F[G]∩F[G′]) if and only if for every F[G]∩

F[G′]-exact sequence 0→ A→ B
g
→ C → 0 and homomorphisms h : G(C)→ X and

h′ : B → X such that h ◦G(g) = h′ ◦ iB there exists a homomorphism t : C → X
satisfying h = t ◦ iC , where iM : G(M)→M is the natural inclusion.
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Proof. Let F = F[G] ∩ F[G′]. Let η : 0→ A
f
→ B

g
→ C → 0 be an F -exact sequence.

Then we have the following commutative diagram.

0

��

0

��

0

��

0 // (G′(C), X) //

��

(G′(B), X) //

��

(G′(A), X) //

��

0

0 // (C,X) //

��

i∗
C

(B,X) //
f∗

��

(A,X)

��

0 // (G(C), X) //
G(g)∗

��

(G(B), X) //

��

(G(A), X) //

��

0

(G(C), X)/ Im i∗C
//

G(g)∗

��

(G(B), X)/ Im i∗B
//

��

(G(A), X)/ Im i∗A
//

��

0

0 0 0

It is easy to see that f∗ is an epimorphism if and only if G(g)∗ is a monomorphism.

Hence X is relative injective if and only if G(g)∗ is a monomorphism for all F -exact

sequences η. The morphism G(g)∗ is a monomorphism if and only if whenever given
h : G(C) → X such that h ◦G(g) = h′ ◦ iB for a homomorphism h′ : B → X , then
there exists a homomorphism t : C → X such that h = t ◦ iC . This completes the
proof of the proposition.

An easy corollary that we use next is the following.

Corollary 3.16. The set

{X ∈ mod Λ | 0→ (G′(M), X)→ (M,X)→ (G(M), X)→ 0 is exact for all M}

is contained in I(F[G] ∩ F[G′]).

We end with an observation for the situation a2 = a, which says that the set of
sequences ηM : 0 → G(M) → M → G′(M) → 0 is in some sense a generating set
for F = F[G] ∩ F[G′].

Lemma 3.17. Suppose a2 = a and let F = F[G]∩F[G′]. Then we have the following.
(a) The sequences ηM : 0 → G(M) → M → G′(M) → 0 for M in mod Λ are

F -exact.
(b) {X ∈ mod Λ | 0 → (G′(M), X) → (M,X) → (G(M), X) →

0 is exact for all M} = I(F ).

Proof. (a) This follows directly from the fact that GG′ = 0 and G′G = 0.
(b) This follows directly from (a) and Corollary 3.16.

3.4. Enough projectives and injectives. Throughout let G = HomΛ(Λ/a, )
for an ideal a in Λ, G′ = idmodΛ /G and b = G(Λ). Now we investigate when
the subbifunctors F[G], F[G′] and their intersection have enough projectives and/or
injectives. We recall that F has enough projectives if for each C in mod Λ there is
an F -exact sequence 0→ K → P → C → 0, where P is F -projective.

We start our investigation by considering the subbifunctor F[G], where we have
a complete answer.
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Proposition 3.18. The subcategory ImG is functorially finite in mod Λ. In par-
ticular, F[G] = FmodΛ/a has enough projectives and injectives.

Proof. This follows directly from the definitions (see [ASo, Corollary 1.13]).

The situation for the subbifunctor F[G′] is more complicated. Here we only have

partial results for the situation when a2 = a. First we point out what is true in
general for this case.

Proposition 3.19. Suppose that a2 = a. Then we have the following.
(a) The subcategory ImG′ of mod Λ/b is closed under submodules and extensions.

In particular, ImG′ is a resolving subcategory of mod Λ/b.
(b) The functor G′ : mod Λ → ImG′ is a left adjoint of the inclusion functor

I : ImG′ → mod Λ and ImG′ is covariantly finite in mod Λ. In particular, F[G′]

has enough injectives.

Proof. Assume that a2 = a. Then we have already seen that (G′)2 = G′ or equiva-
lently that GG′ = 0. Hence, a module X is in ImG′ if and only if G(X) = (0).

(a) By Proposition 3.8 ImG′ is closed under submodules.
If 0 → A → B → C → 0 is exact with A and C in ImG′, then using that G is

left exact it follows directly that G(B) = (0), and therefore B is in ImG′.
Since G′(Λ) = Λ/b, it follows immediately from what we have shown that ImG′

is a resolving subcategory of mod Λ/b.
(b) Let I be the inclusion functor I : ImG′ → mod Λ. Let X be in mod Λ,

Y in ImG′ and f : X → Y a homomorphism. Consider the natural projection
πX : X → G′(X). Since Im f |G(X) is contained in G(Y ) = (0), we have that G(X)

is contained in Ker f . This implies that f factors through πX , that is f = fπX for
a morphism f : G′(X)→ Y . Define

ϕ : HomIm G′(G′(X), Y )→ HomΛ(X, I(Y ))

by ϕ(g) = gπX and

ψ : HomΛ(X, I(Y ))→ HomIm G′(G′(X), Y )

by ψ(f) = f . It is straightforward to see that these morphisms are inverse natural
isomorphisms. Hence (G′, I) is an adjoint pair, and ImG′ is therefore covariantly
finite in mod Λ by [AR].

Since F[G′] = F I(Λ)∪Im G′

, it follows immediately from [ASo, Theorem 1.12] that
F[G′] has enough injectives.

Using that the union of two covariantly finite subcategories of mod Λ is again
covariantly finite we have the following immediate corollary of the two previous
results when a2 = a.

Corollary 3.20. Suppose a2 = a. Then the subbifunctor F = F[G] ∩ F[G′] has
enough injectives and I(F ) = I(Λ) ∪DTrΛ(mod Λ/a) ∪ add ImG′.

Consider the exact sequence 0→ a→ Λ→ Λ/a→ 0 and apply for M in mod Λ
the functor HomΛ( ,M). This gives the exact sequence.

0→ G(M)→M
α
→ (a,M)→ Ext1Λ(Λ/a,M)→ 0,

where Imα = G′(M). Using this sequence we have the following.

Proposition 3.21. Suppose a2 = a. Then the following are equivalent.
(a) G′ is a right exact functor.
(b) Λ/a is a projective Λ-module.
(c) G′ is an exact functor.
(d) ImG′ = mod Λ/b.



21

Furthermore, if any of these equivalent conditions is satisfied, then there ex-

ists an idempotent e in Λ such that Λ '

(

eΛe 0
(1− e)Λe (1− e)Λ(1− e)

)

, a =
(

eΛe 0
(1− e)Λe 0

)

and b =

(

0 0
(1− e)Λe (1− e)Λ(1− e)

)

.

Proof. (a) implies (b). Suppose G′ is a right exact functor. Let 0 → A → B →
C → 0 be an exact sequence in mod Λ. Then we have the following commutative
diagram.

0 0 0




y





y





y

G′(A) −−−−→ G′(B) −−−−→ G′(C) −−−−→ 0




y





y





y

0 −−−−→ (a, A) −−−−→ (a, B) −−−−→ (a, C)




y





y





y

Ext1Λ(Λ/a, A) −−−−→ Ext1Λ(Λ/a, B) −−−−→ Ext1Λ(Λ/a, C)




y





y





y

0 0 0
By assumption the two upper rows are exact and therefore by the Snake Lemma
the connecting homomorphism δ : (Λ/a, C) → Ext1Λ(Λ/a, A) is zero. Hence, Λ/a is
a projective Λ-module.

(b) implies (c). Suppose Λ/a is a projective Λ-module. Then a is also a projective
Λ-module and it follows that G′ = HomΛ(a, ), which is an exact functor.

(c) implies (d). Suppose G′ is an exact functor. Then Λ/a is a projective Λ-
module and therefore a is a direct summand of Λ. Hence there exists an idempotent
e such that a = Λe. Since a is a twosided ideal, a = ΛeΛ. We claim that b = G(Λ) =
Λ(1− e)Λ. Clearly we have that (1− e)Λ ⊂ b, since a(1− e)Λ = Λe(1− e)Λ = (0).
Let x be in b. Then x = ex+ (1− e)x. Since e is in a, it follows that x = (1− e)x
and therefore b = (1− e)Λ = Λ(1− e)Λ. Moreover, we have that a + b = Λ.

Let X be an arbitrary Λ/b-module viewed as a Λ-module. Since G(X) = {x ∈
X | ax = (0)} and X is a Λ/b-module, we have that (0) = (a+b)G(X) = ΛG(X) =
G(X). This shows that mod Λ/b is contained in ImG′, hence ImG′ = mod Λ/b.

(d) implies (a). Suppose ImG′ = mod Λ/b. From the previous result we have
that G′ : mod Λ → ImG′ is a left adjoint of the inclusion functor I : mod Λ/b =
ImG′ → mod Λ. Then G′ is a right exact functor.

Suppose now that one of the equivalent conditions in (a)-(d) is true. Then we
found an idempotent e in the proof of (c) implies (d) such that a = Λe = ΛeΛ
and b = (1 − e)Λ = Λ(1 − e)Λ, where eΛ(1 − e) = (0). It is straightforward to

see that the morphism ϕ : Λ →

(

eΛe 0
(1− e)Λe (1− e)Λ(1− e)

)

given by ϕ(x) =
(

exe 0
(1− e)xe (1− e)x(1− e)

)

is an isomorphism.

Using the previous results the following corollary follows directly.

Corollary 3.22. Suppose that a2 = a and that Λ/a is a projective Λ-module. Then
the subbifunctor F = F[G] ∩ F[G′] has enough injectives and enough projectives. In
particular,

I(F ) = I(Λ) ∪DTrΛ(mod Λ/a) ∪mod Λ/b
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and

P(F ) = P(Λ) ∪mod Λ/a ∪ TrΛD(mod Λ/b).

4. Applications to vector space categories

4.1. Representations of bimodules. In the study of algebras of finite or tame
representation type there are used various reduction techniques to so-called sub-
space categories of vector space categories. A reduction of this form appeared in the
work of Nazarova-Roiter on the Brauer-Thrall conjectures (see [NR]). A modified
version called one-point extension was applied intensively by several authors (see
e.g. [Ri1],[Ri2] as prominent examples) and is still one of the most efficient tools
available. However, in the recent work of Gabriel et. al. [G-V] on the tame and
wild dichotomy the original reduction technique of Nazarova-Roiter was used again.

The aim of this section is to show that the results on relative homology developed
in the previous sections can be used to understand the exact structures of the
arising subspace categories in the cases just mentioned. This provides an interesting
connection between relative homology and vector space category techniques which
seemed to be parts of the representation theory of artin algebras which lie very far
from each other. We get an illustration of our earlier results, and can also apply
them to obtain information on subspace categories.

Before we recall the relevant material about vector space categories, we discuss
more generally bimodule problems. Doing so, we will invoke various notations and
basic results from [GR] but we remark that the use of bimodules has a long history
(see e.g. [Dd]). We fix a commutative artinian ring k and consider a Krull-Schmidt
category K that is is k-finite, which means by definition that K is a k-additive
category whose morphism spaces are finitely generated k-modules. For k-finite
Krull-Schmidt categories which are skeletally small the notation aggregate is in-
troduced in [G-V]. A bimodule over two skeletally small k-finite Krull-Schmidt
categories L and K is a k-linear bifunctor H : L×K → mod k which is covariant
in the second and contravariant in the first argument. The category rep(H) of
representations of H has as objects the triples (X,h, Y ) where X ∈ L, Y ∈ K and
h ∈ H(X,Y ). A morphism from (X,h, Y ) to (X ′, h′, Y ′) is a pair (f, g) of mor-
phisms f : X → X ′ in L and g : Y → Y ′ in K such that H(X, g)(h) = H(f, Y ′)(h′).
The category rep(H) is again a k-finite Krull-Schmidt category and becomes an ex-
act category in a canonical way by choosing as exact pairs those pairs of morphisms
((f, g), (f ′, g′)) such that (f, f ′) is a split exact pair in L and (g, g′) is a split exact
pair in K (see [G-V]).

An example of a bimodule is given in the following way (see [GR, 9.1]): Con-
sider an ideal a in an artin algebra Λ over k. Denote by G the corresponding
left exact subfunctor HomΛ(Λ/a, ) of the identity and and by G′ the associated
factor functor idmodΛ /G. Let b be the ideal G(Λ) of Λ. Then H = Ext1Λ( , )
is a bimodule over mod Λ/b and mod Λ/a. The objects of repH are the triples
(U, h, V ) where U is in mod Λ/b and V is in mod Λ/a and h ∈ Ext1Λ(U, V ) is

an exact sequence 0→ V
f
−→ E

g
−→ U → 0. We now give the relationship to

our previous constructions. We first consider the relative theory for mod Λ in-
duced by the subfunctor F = F[G] ∩ F[G′] of Ext1Λ( , ) in our previous notation.
Then we define a functor Φ: mod Λ → rep(H) as follows. For an object X in
mod Λ, let Φ(X) = (G′(X), h,G(X)) where h is represented by the induced ex-

act sequence 0→ G(X)
ιX−→ X

πX−→ G′(X)→ 0. For a map t : X → X ′ define
Φ(t) = (G′(t), G(t)). Denoting as in Corollary 3.6 by R the relation given by
the maps t : X → X ′ where t = ιX′sπX for some s : G′(X) → G(X ′), we see
that there is induced a fully faithful functor mod Λ/R → repH . The functor
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Φ: mod Λ → rep(H) is not necessarily dense. The image of Φ is the full subcat-
egory repaH of repH whose objects are the triples (U, h, V ) with f(V ) = G(E),

where h is represented by 0→ V
f
−→ E

g
−→ U → 0. The subcategory repaH is

clearly closed under extensions, that is for each exact pair (f : A → B, g : B → C)
in repH with A, C in repaH also B lies in repaH . Then an exact structure is
induced from the exact structure on repH in the obvious way. We now have the
following.

Proposition 4.1. Let the notations be as above. If we identify the category repaH

with mod Λ/R via the functor Φ, then the following hold.
(a) The exact structure on the category repaH is obtained from mod Λ in two

steps, by first taking the exact structure on mod Λ given by the subfunctor F =
F[G] ∩ F[G′] of Ext1Λ( , ), and then taking the induced exact structure on mod Λ/R

for the relation R defined above.
(b) The projective objects of repaH are the EF -projectives and the injective

objects of repaH are the EF -injectives.

(c) The category repaH has almost split pairs.

4.2. Subspace categories of vector space categories. We now recall the no-
tions of a vector space category and its subspace category and motivate the concepts
from the point of view of bimodules.

In many applications bimodules of a particularly simple shape arise. Namely,
one considers the case that L is a semisimple category with only one simple object
S (up to isomorphism). Let D = EndΛ(S)op. Then D is a division ring which is
finitely generated over k. In this situation the bifunctor H is completely determined
by the covariant functor M := H(S, ) : K → modD. Moreover any object of
rep(H) lying in H(Sn, X) may obviously be rewritten as a sequence of n elements
in H(S,X) = M(X). By formalizing this interpretation one encounters the concept
of the subspace category of a vector space category: Namely, a (D-)vector space
category is just a k-additive functor M : K → modD where K is a skeletally small
k-finite Krull-Schmidt category. Its subspace category MD (again a k-finite Krull-
Schmidt category) has as objects the triples X = (Xω , γX , X0) where Xω ∈ modD,
X0 ∈ K and γX ∈ HomD(Xω,M(X0)). Morphisms X → X ′ in this category are
pairs f = (fω, f0) such that fω : Xω → X ′

ω is D-linear, f0 : X0 → X ′
0 is a morphism

in K and M(f0)γX = γX′fω. The Krull-Schmidt category MD is equipped with
an exact structure by using as exact pairs the pairs (f, g) where f : X → Y and
g : Y → Z are such that the sequences (f0, g0) in K and (fω, gω) in modD are split
exact, where the last condition is superfluous.

We now return to the example of the bimodule H = Ext1Λ( , ) discussed above.
Assume that the ideal a giving rise to this bimodule is homogeneous semisim-
ple as a right Λ-module. Letting b = G(a) as before, mod Λ/b is a semisimple
category with only one simple object S up to isomorphism. The associated bimod-
ule interpreted as a vector space category is just M = Ext1Λ(S, ) : mod Λ/a →
modD, where D = EndΛ(S)op. For the functor Φ: mod Λ → MD we have
Φ(X) = (G′(X), h,G(X)) where h ∈ H = Ext1Λ(G′(X), G(X)) is the exact sequence

0→ G(X)
ιX−→ X

πX−→ G′(X)→ 0. This means that h is the image of idG′(X) under

the induced map HomΛ(G′(X), G′(X)) → Ext1Λ(G′(X), G(X)) Consider now the
induced map pX : HomΛ(S,G′(X))→ Ext1Λ(S,G(X)). Since G′(X) ∼= Sn for some
n, HomΛ(S,G′(X) can be identified with the D-space Dn. Hence we have a functor
Φ: mod Λ→MD, where Φ(X) = (Dn, pX , G(X)).

We finally want to identify the subcategory of MD corresponding to the subcat-
egory repaH of repH . As observed in [GR] one has to distinguish two cases. If

aS 6= 0, then repa(H) = rep(H). However, if aS = 0, then repa(H) corresponds to
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the subcategory MD
N of MD where N denotes the subbifunctor N = Ext1Λ/a(S, )

of M and MD
N consists of all objects X = (Xω , γX , X0) with γ−1

X (N(X0)) = 0.
Before we formulate the special case of our above proposition we observe that

since all sequences in modD split we get F[G] ∩ F[G′] = F[G] = FmodΛ/a. We use
our results from section 3 to describe the projective and injective objects in the
obtained subspace categories of vector space categories.

Proposition 4.2. Let Λ be an artin algebra and a an ideal in Λ which is homoge-
neous semisimple as a right Λ-module. Denote by S the corresponding simple left
Λ-module and let C = MD

N if aS = 0 and C = MD otherwise.
(a) The functor Φ: mod Λ → C induces an equivalence of categories between

mod Λ/R and C.
(b) If we equip mod Λ with the exact structure given by the subfunctor FmodΛ/a

and mod Λ/R with the induced exact structure, then this equivalence maps the exact
pairs in mod Λ/R to the exact pairs in C.

(c) The indecomposable projective objects in C are the images of the indecompos-
able objects in P(Λ) and in mod Λ/a, and the indecomposable injective objects are
the images of the indecomposable modules in I(Λ) and in DTr(mod Λ/a).

(d) C has almost split pairs.

We can give a more explicit description of the projectives. Denote by P (S) the
projective cover of S. Obviously P (S) is up to isomorphism the only indecompos-
able projective module in mod Λ which is not a Λ/a-module. On the other hand, if
X ∈ mod Λ/a, then Φ(X) = (0, 0, X). Consequently, we obtain:

Corollary 4.3. The indecomposable projective objects in C are exactly all (0, 0, X)
such that X in modΛ/a is indecomposable together with the object (D,αS , radP (S))
where αS maps the unit element of D to the canonical extension:

0→ radP (S) −→ P (S) −→ S → 0

We do not know a similar description for the injectives.

4.3. Special cases. Let us now apply our results to one-point extensions. Let

Λ =

(

D 0
R B

)

where B is an artin algebra, D is a division ring and R a B-D-

bimodule. The objects of mod Λ can then be described as triples (X, f, Y ) where
X is in modD, Y is in modB and f : X → HomB(R, Y ) is a D-linear map. In
other words, the functor M = HomB(R, ) : modB → modD is a vector space
category. Hence mod Λ can be identified with the subspace category MD, but the
exact structure introduced on MD above does not contain all short exact sequences
in mod Λ but only those sequences whose restrictions to modB split.

We want to show that this example fits into the construction discussed before.

Let a =

(

D 0
R 0

)

. Then a is an idempotent ideal of Λ which is homogeneous

semisimple as right Λ-module. We have b =

(

0 0
R B

)

, Λ/a ∼= B and Λ/b ∼= D.

Hence the associated simple left Λ-module S can be identified with D. It is clear
that the projective cover P (S) of S coincides with a as a left Λ-module and that
radP (S) = R. The factor algebra Λ/a can be identified with B. Since aS 6= 0
and R is trivial, this gives an equivalence mod Λ → MD. Note that the functor
M = HomB(R, ) : modB → modD is naturally isomorphic to Ext1Λ(S, ).

As follows from Corollary 4.3, the indecomposable projective objects in MD

are (D,αS , R) and the objects (0, 0, X) where X is indecomposable in modB.
In order to use Proposition 4.2 to describe the injective objects, consider the
full and faithful functor modB → mod Λ given by sending an object X in
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modB to X = (HomB(R,X), id, X). It is easy to see that for X ∈ modB we
have DTrΛX ∼= DTrB X (see [Ri2]). The indecomposable injective Λ-modules
are (D, 0, 0) and X where X is indecomposable injective in modB. Hence the
indecomposable injective objects in mod Λ for the functor Fmod B are (D, 0, 0)
and X for X indecomposable in modB. Using the isomorphism HomB(R, ) ∼=
Ext1Λ(S, ) : modB → modD, we see that the indecomposable injective objects in
MD are (D, 0, 0) and (Ext1Λ(S,X), id, X) for X indecomposable in modB. This de-
scription of the projective and injective objects in MD was also obtained in [Ri2].

We consider a small variation of the above example. We now let a be the ideal
(

0 0
R 0

)

in Λ =

(

D 0
R B

)

which satisfies a2 = 0. This ideal a is also homo-

geneous semisimple as right Λ-module and the corresponding simple module S is
the same as before. But now the factor algebra Λ/a is D × B. Hence the inde-
composable Λ/a-modules are not only the indecomposable B-modules but also S
itself appears. Thus in contrast to the previous case C is properly contained in MD

although N = 0. Actually, the only indecomposable object in MD not belonging to
MD

N is (D, 0, 0). Altogether, we find an additional indecomposable projective object
namely (0, 0, S) and loose the indecomposable injective object (D, 0, 0). However,
if R 6= 0, then S is not projective and hence a new indecomposable injective object
namely Φ(DTrΛ S) arises. We do not know a good description for this subspace.

Let us finally come to the classical reduction functor of Roiter which is the
functor Φ if we consider the following situation: The given algebra Λ is defined
over an algebraically closed field and is not semisimple. Therefore one can choose
an element which generates an ideal a lying in radΛ which is simple as right and left
module. Consequently, S is a Λ/a-module and C = MD

N . The general description
of the projectives as in our remark applies. Concerning the category of injectives
in MD

N we only know that it is Φ(I(Λ)) ∪ Φ(DTr(mod Λ/a)). This is not a too
convenient description, but at least it can be calculated in some examples.

5. An example for non-existence of almost split sequences

5.1. Prinjective modules. We saw in the previous section that the categoriesMD

and MD
N do have almost split sequences provided they are obtained from module

categories via reduction functors. For MD the existence of almost split sequences
is known if M satisfies certain finiteness conditions, which are always satisfied in
case K has only finitely many isomorphism classes of indecomposable objects (see
e.g. [GR]). The purpose of this section is to present an example where this fails for
MD

N .
We suppose that K is a k-finite Krull-Schmidt category over an algebraically

closed field k and consequently D = k so that M : K → mod k. To construct the
example, we first recall how to realize the category M k

N as extension closed full
subcategory of the category of modules over a finite-dimensional k-algebra. Since
K is supposed to have only finitely many isomorphism classes of indecomposable
objects, we may identify K with the category projA of finite-dimensional projective
left A-modules where the basic algebra A is the endomorphism algebra of a minimal
additive generator of K. Consequently M transforms into a tensor functor with
a right A-module which by abuse of language we denote by M as well. Thus the
objects of Mk are of the shape (Xω, γX , X0) such that Xω ∈ mod k, X0 ∈ projA
and γX ∈ Homk(Vω ,M ⊗A X0).

We define the k-algebra B as the triangular matrix algebra

(

A 0
M k

)

which

is usually called the one-point coextension of A by M . The finite-dimensional
left modules U over B may be considered as triples U = (U0, µU , U1) such that
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U0 ∈ modA, U1 ∈ mod k and µ ∈ Homk(M ⊗AU0, U1). Namely, the corresponding
module is U0 ⊕U1, the multiplication with elements of A on U0 and with elements
of k on U1 is obvious and the multiplication of an element m ∈M with u0 ∈ U0 is
given as m · u0 = µU (m ⊗ u0) ∈ U1. Morphisms in modB appear as pairs (f0, f1)
with the obvious commutativity requirements.

The full subcategory prinB of modB given by all U = (U0, µU , U1) such that
U0 ∈ projA is easily seen to be extension closed. It is often called the subcategory
of prinjective B-modules. The module S := (0, 0, k) is simple projective and lies
in prinB. The full subcategory prin′B of prinB given by all objects which do not
admit a direct summand isomorphic to S is therefore again extension closed. We
will describe an exact equivalence Θ: Mk

0 → prin′B. For this purpose we pick an

object X = (Xω, γX , X0) in Mk
0 and denote by γ̂X a cokernel map M ⊗AX0 → X̂ω

of γX . The equivalence Θ sends the object X to the module (X0, γ̂X , X̂ω) and acts
on the morphisms in the obvious way.

If Pi, i = 1, . . . , n, is a complete family of non-isomorphic indecomposable mod-
ules in projA, then S together with (Pi, id,M⊗APi), i = 1, . . . , n are consequently
up to isomorphism the only indecomposable objects in projB. As projB ⊆ prinB
and prinB is closed under kernels of epimorphisms, projB is the category of pro-
jectives in prinB.

5.2. Modules with projective restriction. If N is any submodule of M , then

the algebra BN :=

(

A 0
N k

)

may be considered as subalgebra of B = BM in

the obvious way. This inclusion gives rise to an exact restriction functor modB →
modBN . We denote by prinN B the full subcategory of modB given by the modules
with projective restriction to BN . Clearly we have projB = prinM B ⊆ prinN B ⊆
prin0B = prinB.

Now an object X ∈ Mk
0 lies in Mk

N iff the induced map γ̂X : N ⊗A X0 →

X̂ω is injective, which in turn means that Θ(X) ∈ prinN B. This shows that Θ
furnishes an equivalence Mk

N → prin′
N B where prin′

N B is of course defined as the
full subcategory of prinN B given by modules which do not admit a direct summand
isomorphic to S. We will continue by studying prinN B in a specific example.

5.3. The example. We put K := mod k and consider the functor M = M ⊗k

− : mod k → mod k where M is a r-dimensional vector space over k for some
natural number r. We see that A = k and Br := B is the r-Kronecker algebra
which is the path algebra over k of the quiver ∆r shown below. The arrows from
the vertex 0 to the vertex 1 correspond to a chosen basis α1, . . . , αr of M .

α1−→

0
... 1

αr−→

Hence we may identify modules U = (U0, µU , U1) with representations of the quiver
∆r i.e. with tuples (U0, U(α1), . . . , U(αr), U1) where the linear maps U(αi) : U0 →
U1 are defined by U(αi)(u0) = µU (αi ⊗ u0) for all u0 ∈ U0. The vector dimU :=
(dimk U0, dimk U1) is called the dimension vector of U .

Since A semisimple, the categories modBr and prinBr coincide. If N is a sub-
module of M , then by adapting bases we may assume that N is generated by
α1, . . . , αq for some 0 ≤ q ≤ r. Hence we get (Br)N = Bq. Because Bq is heredi-
tary, the subcategory prinN B is closed under submodules. Consequently prinN B
is the torsion free class F of a torsion theory (T ,F).
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Let us consider the various cases for r and q. If q = 0, then N = 0, and, if
q = r, then N = M . Hence these cases were already considered above. Thus we
may suppose r > 1 and 0 < q < r.

For r > 1 the Auslander-Reiten quiver of Br always has one preprojective com-
ponent, one preinjective component and an infinite family of regular components.
Clearly the projective modules are in F . We obtain another torsion free indecom-
posable module if we consider the unique non-simple indecomposable projective
Bq-module V as Br-module via extension by 0. As r > 1 and q < r the module
V is regular. If the preprojective component would contain an indecomposable
which is not torsion free, then it contains also an indecomposable torsion mod-
ule. Namely, because the preprojective component is closed under predecessors,
any direct summand of the torsion submodule has to be preprojective as well. But
any preprojective module generates all regular modules and therefore V would be
torsion. From this contradiction we derive that all preprojective modules lie in F .

To deal with the preinjective component, we observe that for r > 1 all prein-
jective modules U satisfy dimk U0 > dimk U1 whereas all projective Bq-modules U
satisfy dimk U0 ≤ dimk U1 for all q ≥ 0. Therefore none of the preinjective modules
can lie in F . We claim that actually all preinjective modules belong to T . The
reason is that the preinjective component is closed under successors and therefore
any indecomposable summand of the torsion free factor module of a non-torsion
module in the preinjective component would have to be preinjective as well.

For r = 2 only the case q = 1 is left to consider. The regular components form a
family of homogeneous tubes indexed over the projective line P

1(k). As prinN B is
closed under extensions and submodules, such a tube lies in F = prinN B2 if and
only if the simple regular module at the mouth of the tube lies in prinN B2. For
(a : b) ∈ P

1(k) this simple regular module is just (k, a, b, k) which lies in prinN B2

if and only if a 6= 0. Consequently all the tubes with exception of the one cor-
responding to (0: 1) ∈ P

1(k) lie in prinN B2. Note that prinN B does not have
any injective objects but obviously has almost split sequences. For completeness
we remark that the tube associated with (0: 1) consists entirely of torsion modules
and consequently the torsion theory (T ,F) splits.

It remains to deal with the case r > 2, in which Br is of wild representation type.
Now all the regular components are of the shape ZA∞. The modules in the DTr
orbit forming the rim of such a component are called quasisimple. Since we already
now that all preprojective modules are in F and all preinjective modules are in
T we can invoke [AK][Corollary 5.2]. By this result there are three possibilities.
The first two are that all regular modules are torsion or all regular modules are
torsion free. We already saw above that there is a torsion free regular module.
On the other hand for r > 2 the extension by 0 of the non-simple indecomposable
injective Br−1-module is regular and not in F as already observed. Hence only the
third alternative of [AK][Corollary 5.2] can be valid which says that in each regular
component C there exist quasi-simple modules UC and VC such that the successors
of UC in C belong to F = prinN Br and the predecessors of VC in C belong to T .
From this follows that each regular component contains an indecomposable module
which is neither torsion nor torsion free. Hence the torsion theory (T ,F) is not
splitting.

We want to show that after possibly changing UC and VC the modules in C
belonging to F = prinN Br are precisely the successors of UC in C and the modules
in C belonging to T are precisely the predecessors of VC in C. For F = prinN Br

this follows from the following lemma.

Lemma 5.1. If X is an indecomposable non-injective Br-module which lies in
prinN Br, then TrDX also lies in prinN Br.
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Proof. That X lies in F implies that the intersection of the kernels of the maps
X(α1), . . . , X(αq) is zero. For the right Br-module Y = D(X) considered as rep-
resentation of the opposite quiver ∆∗

r this means that the sum of the images of the
maps Y (α∗

1), . . . , Y (α∗
q) is Y0.

Let us denote by P0, P1 the indecomposable left and by P ∗
0 , P ∗

1 the indecom-
posable right projective Br-modules. If

0→ (P ∗
0 )n p∗

−→ (P ∗
1 )m −→ Y → 0

is a minimal projective presentation of Y , then p∗ is given by a left multiplication
with a m× n-matrix Γ with entries γνµ in M . Hence each entry can be written as

γνµ =
∑r

i=1 γ
(i)
νµαi with γ

(i)
νµ in k. For i = 1, . . . , r we denote by Γi the m×n-matrix

over k with coefficients γ
(i)
νµ .

The exactness of the above projective presentation together with the fact that the
sum of the images of the maps Y (α∗

1), . . . , Y (α∗
q) is Y0 yields that the (r−q)m×n-

matrix






Γq+1

...
Γr







over k has rank (r− q)m. In particular, the matrix Γq has rank m. The projective
presentation of TrY = DTrX is given by

0→ Pm
1

p
−→ Pn

0 −→ DTrX → 0

where p is given by the right multiplication with Γ. That Γq has rank m shows
that the restriction of DTrX to Br−1 is projective. Consequently any restriction
to some Bq , 1 ≤ q ≤ r − 1 is projective and therefore DTrX lies in prinN Br.

Note that again there are no injectives in prinN Br which by [AK][Theorem (B)]
gives also the existence of a module VC as desired.

Let us finally study almost split sequences in prinN Br. Obviously for every
indecomposable module U in prinN Br there is an almost split sequence starting in
U . We claim that for every regular component C and every module V in the ray
starting in UC there does not exist a minimal right almost split map h : W → V
in prinN Br. Since HomBr

(Z, S) = 0 for all indecomposable Br-modules which are
not isomorphic to S, there also does not exist a right almost split map h : W ′ → V
in prin′

N Br.
To prove or claim by contradiction, we assume that a right minimal h : W → V

in prinN Br exists. Firstly, we know that V is not projective and therefore there is
a non-split short exact sequence in prinN Br ending in V . By factorizing the non-
split epimorphism ending in V through h, we see that h has to be an epimorphism
as well. Since prinN Br is closed under submodules, this yields an almost split
sequence ending in V and starting in some V ′. But we know the almost split
sequences starting in all indecomposables in modBr and V never occurs as end
term.

We remark that as a torsion free class the subcategory prinN Br is covariantly
finite in modBr. Hence the one-sided existence of almost split sequences also follows
from [Kl].
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Appendix

On Gabriel-Roiter’s axioms for exact categories

Bernhard Keller

Abstract. We give a direct proof of the fact that Gabriel-Roiter’s axioms [GR, Ch. 9]

characterize those exact categories in the sense of Quillen [Q] in which all retractions have

kernels.

A. The statement

Recall the setting of [GR, Ch. 9] : Let A be an additive category. A pair (i, d)
of composable morphisms

X
i
→ Y

d
→ Z

is exact if i is a kernel of d and d a cokernel of i. Let E be a class of exact pairs
closed under isomorphism. By definition, a deflation is a morphism which appears
as the second component of a conflation (i, d) ∈ E . The first components i are
called inflations. Consider the following two sets of axioms

Set 1 [GR, Ch. 9]

E1 The composition of two deflations is a deflation.
E2 For each f ∈ A (Z ′, Z) and each deflation d ∈ A (Y, Z), there is a g ∈

A (Y ′, Y ) and a deflation d′ : Y ′ → Z′ such that dg = fd′.
E3 Identities are deflations; if de is a deflation, then so is d.



30 PETER DRÄXLER, IDUN REITEN, SVERRE O. SMALØ, AND ØYVIND SOLBERG

E3op Identities are inflations; if ji is an inflation, then so is i.

Set 2 [K, App. A]

Ex0 The identity morhism of the zero object 10 is a deflation.
Ex1 The composition of two deflations is a deflation.
Ex2 For each f ∈ A(Z ′, Z) and each deflation d ∈ A(Y, Z), there is a cartesian

square (a pullback)

Y ′ d′

→ Z ′

f ′ ↓ ↓ f

Y
d
→ Z ,

where d′ is a deflation.
Ex2op For each f ∈ A(X,X ′) and each inflation i ∈ A(X,Y ), there is a cocartesian

square (a pushout)

X
i
→ Y

f ↓ ↓ f ′

X ′ i′
→ Y ′ ,

where i′ is an inflation.

It is shown in [K, App. A] that the axioms of Set 2 characterize the exact
categories in the sense of Quillen [Q] and that each small category (A, E) satisfying
the axioms of Set 2 admits a fully faithful and exact embedding F : A → B into an
abelian category in such a way that a sequence of objects of A is in E iff its image
under F is short exact in B.

Proposition. The pair (A, E) satisfies the axioms of Set 1 iff if satisfies the axioms
of Set 2 and retractions of A admit kernels.

The proposition will be proved in the following two sections.

B. From Set 1 to Set 2

Suppose that the axioms of Set 1 hold for (A, E). If we have a retraction r of A
admitting a section s, then rs is an identity morphism. So rs is a deflation by the
first part of E3, and r is a deflation by the second part of E3 again. So r admits a
kernel. Moreover, axiom Ex0 holds by E3 and axiom Ex1 holds by E1. To prove
Ex2, suppose that we are given f ∈ A(Z ′, Z) and a deflation d ∈ A (Y, Z). The
composition of

p =

[

f
d

]

: Z ′ ⊕ Y → Z

with the inclusion of the summand Y is the deflation d. Hence, by axiom E3, the
morphism p is a deflation. Therefore p admits a kernel and we have a pullback
diagram

Y ′ d′

→ Z ′

f ′ ↓ ↓ f

Y
d
→ Z.
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It remains to be shown that d′ is a deflation. For this we choose any commutative
square

Y ′′ d′′

→ Z ′

f ′′ ↓ ↓ f

Y
d
→ Z ,

where d′′ is a deflation. Indeed, such squares exist by axiom E2. Now by the
pullback property, the morphism d′′ factors as d′e for some morphism e : Y ′′ → Y ′.
So d′ is a deflation by axiom E3. This proves Ex2.

Axiom Ex2op is harder to prove since Set 1 does not contain E2op. We proceed
in several steps.

1st step: If the rows of a diagram

X
i
→ Y

d
→ Z

f ↓ ↓ f ′ ‖

X ′ i′
→ Y ′ d′

→ Z ,

are conflations, then the left hand square is a conflation square (i.e. the sequence

X
[i f ]t

→ Y ⊕X ′ [−f ′ i′]
→ Y ′

is a conflation). Indeed, first of all, it is easy to check that the left hand square is
a pullback square so that [i f ]t is a kernel of [−f ′ i′]. It remains to be shown that
[−f ′ i′] is a deflation. Now indeed, it is easy to check that the square

Y ⊕X ′ [−f ′ i′]
→ Y ′

[−1 0] ↓ ↓ d′

Y
d
→ Z.

is a pullback. So [−f ′ i′] is a conflation by Ex2 (which we have already proved to
hold).

2nd step: In a diagram

X
i
→ Y

d
→ Z

‖ ↓ f ‖

X
i′
→ Y ′ d′

→ Z

whose rows are conflations, the morphism f is an isomorphism. Indeed, by the
first step, the square

X
i
→ Y

‖ ↓ f

X
i′
→ Y ′

is a pushout (since it is even a conflation square).
3rd step: Axiom Ex2op holds. Indeed, let a diagram

X ′ f
← X

i
→ Y

with an inflation i be given. The composition of the morphism

j =

[

i
f

]

: X → Y ⊕X ′
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with the projection onto Y equals i. So by E3op, the morphism j is an inflation.
So we have a conflation square

X
i
→ Y

f ↓ ↓ f ′

X ′ i′
→ Y ′.

It remains to be shown that i′ is an inflation. Form a conflation

X
i
→ Y

p
→ Z.

By the pushout property of the square, the morphism p uniquely factors as p′f ′ in
such a way that p′i′ = 0. So we have a diagram

X
i
→ Y

p
→ Z

f ↓ ↓ f ′ ‖

X ′ i′

→ Y ′ p′

→ Z.

Here the morphism p′ is a deflation by E3. Moreover, using the pushout property
of the square, it is easy to check that p′ is a cokernel of i′. Unfortunately, this does
not yet imply that i′ is a kernel of p′. But anyway, let i′′ : X ′′ → Y ′ be a kernel
of p′. Then the morphism i′ factors as i′′g for some g : X ′ → X ′′. So we have a
commutative diagram

X
i
→ Y

p
→ Z

f ↓ ↓ f ′ ‖

X ′ i′
→ Y ′ p′

→ Z
g ↓ ‖ ‖

X ′′ i′′
→ Y ′ p′

→ Z

whose first and last rows are conflations. By looking at the squares on the left, we
write down the following commutative diagram

X
[f i]t

→ X ′ ⊕ Y
[−i′ f ′]
→ Y ′

‖ ↓ m ‖

X
[gf i]t

→ X ′′ ⊕ Y
[−i′′ f ′]
→ Y ′.

where m =

[

g 0
0 1

]

.

Its first row is a conflation by construction. Its second row is a conflation by the 1st
step. So the morphism m is invertible by the 2nd step. Thus g is an isomorphism
and i′ is an inflation.

C. From Set 2 to Set 1

Axiom E1 is Ex1. Axiom E2 is implied by Ex2. The first part of axiom E3
follows from Ex2 by the following pullback diagram

Z
1Z→ Z

↓ ↓

0
10→ 0.

To prove the second part, suppose that we have a conflation

X
i
→ Y

de
→ Z.

Then using Ex2 we form the pullback square

Y ′ p
→ Z ′

d′ ↓ ↓ d

Y
de
→ Z.
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By the pullback property, there is a unique morphism s : Y → Y ′ such that d′s = 1Y

and ps = e. So d′ is a retraction. And by hypothesis, d′ admits a kernel j : U → Y ′.
It is not hard to check that pj : U → Z ′ is a kernel of d. The fact that under these
circumstances, d is a deflation is proved in [K, App. A] (this is exactly the content
of Quillen’s redundant axiom c).

Dually, the first part of axiom E3op follows from Ex0 and Ex2op. For the second
part, we first prove that sections of A admit cokernels. Indeed, let i : X → Y and
r : Y → X be such that ri = 1X . By the assumption, the morphism r admits a
kernel s : Z → Y . The endomorphism 1Y − ir of Y satisfies r (1Y − ir) = 0. So we
have (1Y − ir = sd for some morphism d : Y → Z. It is easy to check that d is a
cokernel of i.

Now we can dualize the proof of E3 to obtain E3op (using the proof of axiom cop

in [K, App. A]).
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