- Aslak B. Buan/Dag Madsen:
Origins and statements
- Claudia Strametz/Rachel Taillefer:
Resolutions and finitistic dimension for monomial algebras
- Oleksandr Khomenko:
Finite finitistic dimension for
radical cubed 0 and generalisations
- Nicole Snashall/John Hunton:
Resolutions in general
- James A. Shepherd:
Gröbner bases
- Alison Parker:
Basic definitions and examples
- Maud De Visscher/Rowena Paget:
Contravariant finiteness for the modules
of finite projective dimension
- Christelle Chesne:
Torsion theories and tilting
modules
- Francesca Mantese:
Correspondence between (co)tilting
modules and special homologically finite
subcategories
- Bernt Tore Jensen/Li Libin/Xiuping Su:
Representation dimension of artin
algebras
- Reinhard Waldmüller:
Varieties of algebras and modules
- Dagmar M. Meyer:
Bounds for global and finistic
dimensions
- Joachim Simon:
The Auslander-Buchsbaum formula
- Koen De Naeghel/Bert Sevenhant:
Characterisations of regular local rings
- Dirk Kussin:
Characterisations of complete
intersections
- Javier Sanchez/Dolors Herbera:
Finitistic dimension equals Krull
dimension
- Kenji Lefevre-Hasegawa:
The difference between the little and the
big finitistic dimension
- Andrew Hubery/Jan Schröer:
Criteria for equality of the little and the big
finitistic dimension
- Jan Schröer/Andrew Hubery:
Contravariant finiteness for the modules
of projective dimension less than n
- Martin Hertweck/Marcos Soriano:
Introduction to derived categories and
tilting
- Fabio Stumbo:
Reduction techniques for homological conjectures
BACK TO
MAIN PAGE
BACK TO
program of the first part
|